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2Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés (Madrid), Spain

(Received 10 September 2015; published 28 December 2015)

Entanglement is the resource to overcome the natural limitations of spatially separated parties restricted to local
operations assisted by classical communication (LOCC). Recently, two new classes of operational entanglement
measures, the source and the accessible entanglement, for arbitrary multipartite states have been introduced.
Whereas the source entanglement measures from how many states the state of interest can be obtained via
LOCC, the accessible entanglement measures how many states can be reached via LOCC from the state at
hand. We consider here pure bipartite as well as multipartite states and derive explicit formulas for the source
entanglement. Moreover, we obtain explicit formulas for a whole class of source entanglement measures that
characterize the simplicity of generating a given bipartite pure state via LOCC. Furthermore, we show how the
accessible entanglement can be computed numerically. For generic four-qubit states we first derive the necessary
and sufficient conditions for the existence of LOCC transformations among these states and then derive explicit
formulas for their accessible and source entanglement.
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I. INTRODUCTION

Entanglement is considered to be one of the charac-
teristic traits of quantum mechanics. Besides its interest
from the foundational point of view, it plays a key role
in quantum information science, being a resource for most
of its applications such as quantum communication and
quantum computation [1]. This has led to the development of
entanglement theory [2], which has also recently brought new
tools for the understanding of quantum many-body systems
in condensed matter physics [3]. The characterization (of
different forms) of entanglement and its quantification play
a central role in this theory. Ideally, entanglement measures
should allow to operationally quantify how useful a state
is for quantum information applications and how efficient
protocols can be and provide quantitative means to link
entanglement to other physical phenomena such as phase
transitions. Despite remarkable advances, there are still many
issues that require a better understanding, particularly in the
case of multipartite states and mixed states in general. There is
a clear need for entanglement measures which are on the one
hand operationally meaningful and on the other hand easy to
compute.

The paradigm of local operations assisted by classical com-
munication (LOCC) is of paramount importance in the theory
of entanglement. LOCC constitutes the most general class of
transformations allowed by the rules of quantum mechanics
to distant parties: Each subsystem can undergo any form of
local quantum dynamics (i.e., a completely positive map) at
will and the parties’ actions can be correlated through the
use of classical communication. Thus, LOCC maps constitute
all possible protocols for the manipulation of entangled states.
Moreover, LOCC allows one to formulate entanglement theory
as a resource theory. This is because entanglement cannot be
created by LOCC alone and it is, hence, a resource to overcome
the limitations of parties restricted to this class of operations.
The basic law of entanglement is that it cannot increase by
LOCC and, therefore, an entanglement measure must be a
function that is monotonic with respect to the ordering induced

by this class of transformations. Unfortunately, this ordering
is in general just partial (see, e.g., Ref. [4]) and many different
functions that qualify as entanglement measures exist. For this
reason, it is desirable to seek for some further operational
meaning behind these functions in the context of LOCC in
order to single out the most relevant entanglement measures.

The identification of the operational meaning of entangle-
ment measures has been particularly successful in the case
of pure bipartite entangled states. It has been shown that
the entropy of entanglement represents the rate at which
any such state can be reversibly transformed by LOCC
in the asymptotic limit of infinitely many copies into the
maximally entangled state [5]. Here the notion of maximal
entanglement stems from LOCC transformations on single
copies: The maximally entangled bipartite state is the unique
state that cannot be obtained from any other local unitary–
(LU) inequivalent bipartite state but permits transformation
into any other state [4]. Regrettably, the idea of reversible
entanglement distillation cannot be extended to bipartite mixed
states. The entanglement cost (i.e., the rate at which the state
is obtained from the maximally entangled state) in general
differs from the distillable entanglement (i.e., the rate at
which the state is transformed to the maximally entangled
state) [6]. Furthermore, the computation of these measures is
formidably difficult. There are other measures that boil down
to the entanglement entropy for pure states but which differ for
mixed states such as the relative entropy of entanglement [7] or
the squashed entanglement [8]. However, despite interesting
properties, they lack the interpretation in terms of LOCC
conversion rates and their exact computation is still very hard.

The situation is even worse in the multipartite case. There
exists no unique maximally entangled state [9] and it is not
clear to which set of states LOCC asymptotic rates have to
be defined (the so-called minimal reversible entanglement
generating set (MREGS) problem [10]). Nevertheless, several
entanglement measures have been proposed from the purely
mathematical perspective of invariants such as the tangle [11]
to the ability to create bipartite entanglement among given cuts
such as the localizable entanglement [12]. Besides this, many
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bipartite measures admit a generalization to multipartite states
like distance-based measures such as the geometric measure
of entanglement [13] to cite an example. However, all these
measures are hard to compute and, more importantly, many of
them do not have an interpretation in the context of the LOCC
paradigm.

In order to try to close this gap, we have recently introduced
in Ref. [14] operational entanglement measures for general
(pure or mixed) multipartite states which are LOCC meaning-
ful. The basic idea is to focus on the capacity of a state for
single-copy LOCC transformations instead of transformation
rates in the asymptotic regime. In more detail, we have
introduced two classes of entanglement measures based on the
accessible volume and the source volume of a state. The first
one quantifies the relative volume of inequivalent states that
can be accessed from our state by LOCC while the second one
quantifies the relative volume of inequivalent states from which
our state can be obtained by LOCC. Hence, these measures
have a clear operational meaning in the context of LOCC
transformations. The larger the accessible volume is the more
entangled (i.e., useful) a state should be: The state is at least
as powerful in applications as any state in the accessible set
as any protocol achievable with the latter can also be achieved
with the former by converting it by LOCC to this accessible
state first. On the other hand, the larger the source volume the
less entangled a state should be given that many inequivalent
states can reach this state by LOCC. Notice, then, that these
measures are completely general, valid for arbitrary states of
any dimension. Moreover, they can be generalized to classes of
entanglement measures by considering different Hilbert spaces
for the initial and the final state (see Ref. [14] and Sec. II).
Furthermore, whenever the possible LOCC transformations
are characterized, these measures can be computed. Although
characterizing LOCC transformations is notoriously difficult
[15], this problem has lately moved forward [4,9,16]. Using
these insights, in Ref. [14] we have analyzed the three-qubit
pure-state case providing explicit formulas for these measures.
Here we further show the versatility of this approach by
computing these measures for the bipartite pure-state case
and the generic four-qubit pure-state case. In order to do
so, we complete the analysis of Ref. [9] and characterize
all possible LOCC transformations among the latter class
of states.

The outline of the remainder of the paper is as follows.
In Sec. II we recall the definition and properties of the two
classes of entanglement measures we introduced in Ref. [14].
In Sec. III we consider general bipartite pure states and
derive explicit formulas for the source entanglement and
its generalizations. That is, we obtain explicit formulas for
a whole class of operational entanglement measures that
quantify how easy it is to generate a bipartite pure state from
other bipartite quantum states via LOCC. These measures can
be used to characterize, e.g., the entanglement contained in
pure quantum states of two qubits or two qutrits. Moreover,
we demonstrate how the accessible volume can be computed
and illustrate the results by considering up to two four-level
systems. Section IV deals with the multipartite case, where we
first derive the necessary and sufficient conditions for LOCC
convertibility of generic four-qubit states and then compute
the new entanglement measures.

LO CC

LOCC

FIG. 1. (Color online) In this schematic figure the source set,
Ms(ρ), and the accessible set, Ma(ρ), of the state ρ are depicted.
Any state in Ms(ρ) can be transformed to ρ via LOCC and ρ can be
transformed into any state in Ma(ρ) via LOCC.

II. ACCESSIBLE AND SOURCE ENTANGLEMENT

In this section we review the definition of the entan-
glement measures we have introduced in Ref. [14]. Since
LU transformations are reversible LOCC transformations, the
entanglement of two states is equivalent if they are related
by such a transformation. Hence, we consider the possible
LOCC transformations among the LU-equivalence classes of
states rather than states in general. That is, we always pick
a unique representative state from each class. We say that a
state ρ can reach a state σ and that σ is accessible from ρ if
there exists a deterministic LOCC protocol which transforms
ρ into σ . For a given state, ρ, we denote by Ma(ρ) the set of
states which can be accessed from ρ and by Ms(ρ) the set of
states which can reach ρ (see Fig. 1). Let μ denote an arbitrary
measure in the set of LU-equivalence classes of states. Then,
the source volume of ρ is defined by Vs(ρ) = μ(Ms(ρ)) and the
accessible volume by Va(ρ) = μ(Ma(ρ)). As mentioned in the
Introduction, these quantities measure respectively the amount
of inequivalent states that are not less useful and not more
useful than the state at hand. Thus, the accessible entanglement
and the source entanglement are defined by

Ea(ρ) = Va(ρ)

V
sup
a

, Es(ρ) = 1 − Vs(ρ)

V
sup
s

, (1)

where V
sup
a (V sup

s ) denote the supremum of the accessible
(source) volume according to the measure μ.

A few remarks are in order. First, due to their operational
meaning, it is easy to see that Ea and Es are valid entanglement
measures (see Ref. [14]). That is, for any deterministic LOCC
protocol � it holds that

Ea(�(ρ)) � Ea(ρ), Es(�(ρ)) � Es(ρ) (2)

for every state ρ.
Notice that the so-called entanglement monotones have

been sometimes considered as entanglement quantifiers. These
quantities must, in contrast to entanglement measures, fulfill
that if different outcomes of the LOCC map � acting on
a state, �k(ρ), can be postselected, each of them occurring
with probability pk , then entanglement cannot increase on
average, i.e.,

∑
k pkE(�k(ρ)) � E(ρ). However, we follow

here the definition of entanglement measures, for which
E(�(ρ)) � E(ρ) for any LOCC map � must hold. For a
discussion justifying the suitability of this requirement over the
averaged one, we refer the reader to Sec. XV.B.1 of Ref. [2].
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Second, the choice of the mathematical measure μ to
compute the volumes of the source and accessible sets is
in principle arbitrary. That is, any valid measure leads to
an entanglement measure. Depending on the measure, one
might obtain a different ordering of the states, as is common
in case of larger systems than those composed of two qubits
[17]. The choice of the measure can be fixed by the physical
constraints of the problem at hand or even out of mathematical
convenience. Obviously, however, one should always consider
a fixed dimension of the states in the source set. This is because,
by imposing no constraint on the dimension, the size of this
set would explode by considering source states of arbitrarily
large dimension. A similar thing happens for the accessible
set as it would shrink to measure zero relative to states of
sufficiently large dimension. Thus, one should always restrict
to a choice of measure which is supported on states of a given
dimensionality. Note that by changing this choice of dimension
(and/or the number of considered subsystems), one has the
freedom to obtain different families of measures {Ek

s }k�d and
{Ek

a}k�d , where d is the effective dimension of the subsystems
of the state at hand [14].

Another issue to take into account is that it can be the
case that one is interested in the relative volumes of states
under LOCC transformations among particular classes of
states. In this case one should choose measures which are
only supported on these classes. For instance, and this will
always be the case in this article, one can consider only
transformations among pure states. Hence, the measure μ will
only be supported on the set of LU-equivalence classes of
pure states. This seems a reasonable choice as the study of
pure entanglement inside the full (mixed) state space might
be too coarse grained given that pure states are of measure
zero (e.g., Ms would have measure zero for all pure two-qubit
states on the full state space of two-qubit states given that it
is not possible to convert via LOCC a nonpure two-qubit state
into a pure entangled two-qubit state [18]). Another instance
is the study of multipartite states where we will consider
measures that are not supported on biseparable states. Finally,
it might be even desirable to choose different mathematical
measures for different subclasses. This might be the case
when these subclasses are not LOCC related [thus, this does
not compromise the validity of Eq. (2)] or when the different
subclasses have source or accessible sets living in manifolds
of different dimensionality (see Ref. [14]).

III. BIPARTITE SYSTEMS

A. Preliminaries

1. LOCC transformations for bipartite systems

Every pure state of a bipartite quantum system with Hilbert
space H = Cd1 ⊗ Cd2 can be (up to local unitaries) written
as |ψ〉 �LU

∑d
i=1

√
λi |ii〉, where d = min{d1,d2} and λi � 0

denote the Schmidt coefficients with
∑

i λi = 1. We denote
by λ(ψ) = (λ1, . . . ,λd ) ∈ IRd the Schmidt vector of |ψ〉 and
will consider in the following without loss of generality two
d-level systems. As can be easily seen from the Schmidt
decomposition given above, two d-level states, |ψ〉,|φ〉, are
LU equivalent if and only if λ↓(ψ) = λ↓(φ), where here and
in the following λ↓(ψ) ∈ IRd , where λ↓(ψ)i � λ↓(ψ)i+1 � 0

denotes the sorted Schmidt vector of |ψ〉. In the context of
LOCC transformations of pure bipartite states, the following
functions of x = (x1, . . . ,xd ) ∈ IRk:

Ek(x) :=
k∑

i=1

xi, k ∈ {1, . . . ,d}, (3)

play an important role. It was shown in Ref. [4] that a state
|ψ〉 ∈ H can be transformed into |φ〉 ∈ H deterministically
via LOCC if and only if λ(ψ) is majorized by λ(φ), written
λ(ψ) ≺ λ(φ), i.e.,

Ek(λ↓(ψ)) � Ek(λ↓(φ)) ∀k ∈ {1, . . . ,d}, (4)

with equality for k = d.
A direct consequence of this criterion is that the source and

accessible set of |ψ〉 ∈ H are given by

Ms(ψ) = {|φ〉 ∈ H s.t. λ(φ) ≺ λ(ψ)}, (5)

Ma(ψ) = {|φ〉 ∈ H s.t. λ(ψ) ≺ λ(φ)}. (6)

As mentioned above, the volumes of these sets measure
how easy it is to generate a given state and how many states
a given state can access respectively. As explained before, we
quantify the set of LU-equivalence classes as the amount of
LU-equivalent states which can be used to reach a given state is
not of relevance here. Due to the one-to-one correspondence
between the LU-equivalence classes of bipartite pure states
and the sorted Schmidt vectors, we can associate to the sets
given in Eqs. (5) and (6) the following sets of sorted Schmidt
vectors in IRd :

Ms(ψ) = {λ↓ ∈ IRd s.t. λ↓ ≺ λ(ψ)}, (7)

Ma(ψ) = {λ↓ ∈ IRd s.t. λ(ψ) ≺ λ↓}. (8)

Unless otherwise stated, d denotes the Schmidt rank of |ψ〉 and
these sets are hence supported on states of the same dimensions
as |ψ〉. Notice, however, that, as explained in the previous
section, it is possible to consider source sets supported on states
of larger dimension and accessible sets supported on states of
smaller dimension. This gives the possibility to obtain different
families of measures (see Ref. [14] and Sec. III B below).

The sets given in Eqs. (7) and (8) are convex polytopes. In
order to compute their volumes in the subsequent sections, we
first review some of their properties.

2. Convex polytopes

We briefly recall some definitions and results concerning
convex polytopes. The reader is referred to Ref. [19] for a
comprehensive introduction into the study of convex poly-
topes. A closed half space in IRk is a set of the form H = {x ∈
IRk s.t. cx + c0 � 0}, with c ∈ IRk,c0 ∈ IR. We denote by h(H )
the hyperplane that fulfills the inequality with equality, i.e.,
h(H ) := {x ∈ IRk s.t. cx + c0 = 0}. A well-known and impor-
tant result for subsets P ⊂ IRk is the following equivalence.
A subset P ⊂ IRk is the bounded intersection of a finite set of
closed half spaces, i.e.,

P = {x ∈ IRk s.t. Ax + b � 0} for A ∈ IRm×k,b ∈ IRm, (9)
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if and only if it is the convex hull of a finite point set, i.e.,

P = conv(V ), where V = {vi ∈ IRk}. (10)

The object P is called a convex polytope and a representation
of the form in Eq. (9) is an H representation of P . The latter
way to define the polytope is called V representation. It is
unique if the set {vi} is minimal. This minimal set is called
vertex set, vert(P ), of P . The dimension of P , dim(P ), is
the dimension of its affine hull, i.e., of the smallest affine
subspace of IRk that contains P . A face F of P is a set of the
form F = P ∩ h(H ) for some hyperplane h(H ). Here H ⊃ P

is a closed half space that contains P . The dimension of F

is again the dimension of its affine hull. Vertices are faces of
dimension 0, while faces of dimension 1 and dim(P ) − 1 are
called edges and facets of P ⊂ IRk respectively. Furthermore,
a polytope with dim(P ) = k is called simple if every vertex
is contained in only k facets. Note that this is the minimal
number of facets a vector must be an element of in order
to be a vertex. That is, every vertex of a simple polytope
is an element of only k hyperplanes that are associated to
closed half spaces in a minimal H representation, i.e., an H

representation of the polytope that consists of the minimal
number of intersecting half spaces. Two vertices are called
neighbors if they are connected by an edge, i.e., if k − 1 of the
above-mentioned hyperplanes coincide. It is easy to see that a
k-dimensional polytope is simple if and only if every vertex
has k neighbors [20].

Whereas sets such as Ms(ψ) have been studied in detail
in the literature (see Ref. [19] and references therein), and
its vertices have been computed [21] (see Sec. III B), much
less is known about the accessible set. Note that not even
the identification of the vertices of the accessible volume is
straightforward. In fact, even the number of vertices depends
strongly on the state of interest, as we will explain in Sec. III C.
However, there exist algorithms that can compute the vertices,
i.e., the minimal V representation, of a convex polytope from a
given H representation. They can also be used to compute the
accessible volume, which we will use in Sec. III C to determine
the accessible entanglement.

B. Source volume

We determine here the volume of the source set given in
Eq. (7). In order to do so, we give a description of Ms(ψ) in
terms of convex geometry. Let us first note that the conditions
in Eq. (4) on the sorted Schmidt vectors are equivalent to the
following set of inequalities on the unsorted Schmidt vectors

Ω = {Eσ
k (λ(φ)) � Ek(λ↓(ψ)) s.t. k ∈ {1, . . . ,d},σ ∈ 	d

}
.

(11)

Here Eσ
k (λ) := Ek(Pσλ), where σ denotes an element of

the permutation group 	d of d elements and Pσ denotes
the corresponding d × d permutation matrix, i.e., Pσλ =
[λσ (1),λσ (2), . . . ,λσ (d)] ≡ λσ . This can be easily seen by noting
that for any λ ∈ IRd we have Ek(Pσλ) � Ek(λ↓) for any k and
any permutation σ ∈ 	d . Hence, the majorization conditions
given in Eq. (4) are fulfilled if and only if the conditions in
Eq. (11) are.

For reasons that will become clear below, we consider the
set of all Schmidt vectors that majorize λ(ψ), not just the sorted

ones, which is given by

MLU
s (ψ) = {λ ∈ IRd s.t. λ ≺ λ(ψ)}. (12)

It is a well-known fact that MLU
s (ψ) is a convex polytope

whose vertices are given by the vectors λ(ψ)σ , with σ ∈ 	d

[21]. Hence, its V representation reads

MLU
s (ψ) = conv({λ(ψ)σ }σ∈	d

). (13)

Note further that, as the cardinality of 	d is d!, every
generic state in Ms(ψ), i.e., every state with pairwise different
Schmidt components, is represented d! times inMLU

s (ψ). This
does not hold for nongeneric states. However, as the set of
nongeneric states is of measure zero, we obtain that

Vs(ψ) = μ(Ms(ψ)) = 1

d!
μ(MLU

s (ψ)). (14)

We are going to show below that MLU
s (ψ) is generically a

(d − 1)-dimensional polytope. Hence, we choose for μ the
Lebesgue measure in IRd−1 in order to arrive at a physically
meaningful quantification of the source set. The nongeneric
case will be treated afterwards (see Appendix A).

In order to determine now the volume of MLU
s we use the

results presented in Ref. [22]. There, the volume of a simple
polytope, P ⊂ IRk , with dim(P ) = k, was shown to be

μ(P ) = (−1)k

k!

∑
v∈vert(P )

|det(mv)| 〈v,ξ 〉k∏k
i=1〈ei(v),ξ 〉 . (15)

Here mv is the k × k matrix [e1(v); e2(v); . . . ; ek(v)], where
ei(v) = v − vi(v) denotes the edge vector that connects the
vertex v with its i-th neighboring vertex vi(v) [23]. Moreover,
the vector ξ ∈ IRk is an arbitrary vector with the property that it
is not orthogonal to any edge vector, i.e., 〈ξ,ei(v)〉 �= 0 for all v
and i. In fact, |det(mv)|/k! is the volume of the simplex defined
by the vertex v and its neighbors. With the term simplex we
refer to a k-dimensional polytope in IRk that is the convex hull
of k + 1 vertices. The volume of the whole polytope P ⊂ IRk

is thus the weighted sum of these different, but overlapping,
simplices.

Hence, in order to compute Vs(ψ) via Eq. (15) it remains
to show that MLU

s (ψ) is a simple polytope and to find the
vector ξ with the properties mentioned above. Note that, due
to the normalization condition,

∑d
i=1 λi = 1, we have that

MLU
s (ψ) is at most a (d − 1)-dimensional polytope in IRd . As

a consequence, we need to identify the (d − 1)-dimensional
subspace of IRd , A, which contains MLU

s (ψ) and show that
MLU

s (ψ) is simple. More specifically, we are going to show
that every vertex ofMLU

s (ψ) has generically (d − 1) neighbors
and that the vertex and its neighbors are affinely independent,
i.e., the (d − 1) edge vectors {ei(v)}i are linearly independent.
This implies that MLU

s (ψ) is a (d − 1)-dimensional simple
polytope. Finally, we have to find ξ fulfilling the properties
mentioned above.

Let us first describe the (d − 1)-dimensional subspace
of IRd , which contains MLU

s (ψ). Note that MLU
s (ψ) ⊂

{λ ∈ IRd s.t.
∑

i λi = 1} =: A, where A = 1√
d
φ̂+ + U is a

(d − 1)-dimensional affine subspace of IRd [24]. Here φ̂+ =
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1√
d

(1,1, . . . ,1) and

U =
{
λ ∈ IRd s.t.

∑
i

λi = 0

}
. (16)

We consider first the generic case. That is, there exists no
pair of different indices, i,j , such that λi = λj . Notice then that
in this case the vertices of this polytope are in one-to-one cor-
respondence with those of the so-called permutahedron, i.e.,
the polytope whose vertices are formed by all permutations of
the coordinates of the vector (1,2, . . . ,d), which has been well
studied in polytope theory. It is known that the permutahedron
is simple and its vertices have been characterized [19]. For the
sake of readability, we give here a self-contained proof that
MLU

s (ψ) corresponds generically to a simple polytope in the
(d − 1)-dimensional subspace A, i.e., that every vertex has
exactly d − 1 affine independent neighbors.

First, we determine the neighbors of the vertex λ(ψ) =
λ↓(ψ), which we assume to be sorted already. To do so,
we consider here the set of d − 1 independent inequalities
Ω1 = {Ek(λ′) � Ek(λ(ψ)) s.t. k ∈ {1, . . . ,d − 1}} and the set
Ω2 = Ω\Ω1, where Ω is as defined in Eq. (11). Clearly, λ(ψ)
trivially satisfies all d − 1 inequalities in Ω1 as equalities. Its
neighboring vertices must satisfy d − 2 inequalities in Ω1 and
one independent inequality of Ω2 as equalities, as they must
be elements of d − 2 facets of which λ(ψ) is an element, too.
Using now that each of the vertices must be of the form λ(ψ)σ
[see Eq. (13)], we have that the neighbors of λ(ψ) can only
be of the form λ1,i = Pτi,i+1λ(ψ), where Pτi,i+1 denotes the
permutation matrix permuting component i with component
i + 1 and leaving the rest unchanged, e.g., Pτ1,2λ(ψ) =
(λ2,λ1,λ3, . . . ,λd ). As there are d − 1 possible permutations
of this kind, we have d − 1 neighbors of the vertex λ(ψ) [25].
As the d − 1 edge vectors e(λ(ψ))i = λ(ψ) − λ(ψ)i are of
the form e(λ(ψ))i = (0, . . . ,0,λi+1 − λi,λi − λi+1,0, . . . ,0),
they span a (d − 1) dimensional space. Hence the polytope
MLU

s (ψ) is indeed d − 1 dimensional. The same argument
holds for any other vertex λ(ψ)σ , which has the neighbors
λσ,i = PσPτi,i+1λ(ψ) [26]. Hence, all vertices have exactly
d − 1 neighbors, which implies that the (d − 1)-dimensional
polytope is simple. Note that it does not need to be simple
in case of degeneracy, i.e., for nongeneric states. However,
using continuity arguments, one can show that the volume of
the corresponding polytope can be computed as in case of no
degeneracy (see Appendix A for details).

We can now use the volume formula given in Eq. (15)
in order to calculate the source volume of a generic state
with Schmidt vector λ(ψ) = λ↓(ψ). The volume is trans-
lationally invariant, implying that V LU

s (ψ) = μ(MLU
s (ψ)) =

μ[MLU
s (ψ) − 1/

√
dφ̂+]. The vertices of the translated poly-

tope are given by λ(ψ)σ − 1/
√

dφ̂+. Note that these vertices
are d-dimensional vectors. However, they obviously all belong
to the (d − 1)-dimensional subspace U defined in Eq. (16).
In order to use Eq. (15) all vectors needed there must be
considered as linear combinations of an orthonormal basis
of U , e.g., the matrix mv contains the coordinates of the
edge vectors {ei(v)}i with respect to that basis. However, we
use the following properties to circumvent this basis change.
Note that the term |det(mv)| in Eq. (15) gives the volume of

the k-dimensional parallelotope that is defined by the edge
vectors {ei(v)}i . Its numerical value is identical to the volume
of a (k + 1)-dimensional parallelotope of which the k vectors
that define the base coincide with the original ones and the
(k + 1)-th vector is normalized and orthogonal to the subspace
that contains the base, e.g., the area of a rectangle is equal to
the volume of a cuboid that is of height one and whose base
coincides with the rectangle [27]. For the current computation
this means that

|det(mλσ
)| = |det

(
φ̂+; e1(λσ ); e2(λσ ); . . . ; ed−1(λσ )

)|,
where φ̂+, as defined before, is the vector that is orthogonal
to the edge vectors ei(λσ ) = Pσe(λ(ψ))i , with e(λ(ψ))i =
(0, . . . ,0,λi+1 − λi,λi − λi+1,0, . . . ,0). That is, we do not
need to express the edge vectors in terms of an orthonormal
basis of U in order to compute this determinant, but we can
continue with the representation in terms of their d coordinates
in the standard basis of IRd . Using the fact that Pσ φ̂+ = φ̂+
and |det(Pσ )| = 1 it follows that

|det(mλσ
)|

= |det(Pσ )||det(φ+; e1(λ(ψ)); e2(λ(ψ)); . . . ; ed−1(λ(ψ)))|

=
√

d

d−1∏
k=1

|λk − λk+1|. (17)

The last expression can be easily obtained as each vector
ei(λ(ψ)) contains only two nonvanishing entries. It is now easy
to choose a vector ξ ∈ U fulfilling that it is nonorthogonal to
any of the edge vectors ei(v), as required by Eq. (15). Note that
ξ only appears in inner products. Moreover, the inner product
is invariant under a basis change from an orthonormal basis of
U , extended by φ+ in order to be a basis of Rd , and the standard
basis of IRd . Consequently, we can again represent ξ and all
other vectors in these inner products in the standard basis. In
fact, for ξ = (1,2, . . . ,d) − d+1

2 (1,1, . . . ,1) ∈ U it holds that

〈ξ,ei(λσ )〉 = 〈ξ,Pσ ei(λ(ψ))〉 = 〈Pσ−1ξ,ei(λ(ψ))〉
= [σ−1(i) − σ−1(i + 1)](λi+1 − λi), (18)

where we used that P T
σ = Pσ−1 . Furthermore, we

have 〈ξ,λ(ψ)σ − 1/
√

dφ̂+〉 =∑d
k=1 σ−1(k)λk − d+1

2 . Plug-
ging these expressions into the volume formula in Eq. (15)
and relabeling σ−1 with σ , using that Vs(ψ) = 1

d!μ(MLU
s (ψ))

and the fact that λ(ψ) is a sorted Schmidt vector, we obtain

Vs(ψ) = 1

d!

√
d

(d − 1)!

∑
σ∈	d

[∑d
k=1 σ (k)λk − d+1

2

]d−1∏d−1
k=1 σ (k) − σ (k + 1)

. (19)

We show in Appendix A that this formula holds also in the case
of degenerate Schmidt coefficients. Note that the separable
state, |ψ〉sep, with Schmidt vector (1,0,0, . . . ,0) can be
obtained from any other quantum state via LOCC and therefore
maximizes the source volume, i.e., supφ∈H Vs(φ) = Vs(ψsep).
According to Eq. (13) the vertices of MLU

s (ψsep) are given by
the standard vectors ei in IRd . MLU

s (ψsep) is thus a simplex
defined by the d vertices {ei}di=1 whose volume is easily
computed. It is then straightforward to see that Vs(ψsep) =√

d/(d!(d − 1)!). Furthermore, it is easily seen that Vs(φ+) =
0, as we show in Appendix A. Using the definition of the
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source entanglement, i.e., Es(ψ) = 1 − Vs (ψ)
supφ∈H Vs (φ) , we obtain

the following lemma.
Lemma 1. The source entanglement of a bipartite state,

|ψ〉 ∈ ICd ⊗ ICd , with sorted Schmidt vector λ(ψ) is given by

Es(ψ) = 1 −
∑
σ∈	d

[∑d
k=1 σ (k)λk − d+1

2

]d−1∏d−1
k=1 σ (k) − σ (k + 1)

. (20)

In what follows we show how one can generalize the
formula for the source entanglement in Lemma 1 in order
to obtain a whole class of new operational entanglement
measures as mentioned in Sec. II.

1. Generalizations of the source entanglement

We consider, for given |ψ〉 with sorted Schmidt vector λ(ψ),
its source set of states |�〉 ∈ ICk ⊗ ICk , where k � d. More
specifically, we measure the set of states with greater or equal
local dimensions that can be converted to |ψ〉 via LOCC. This
set is denoted by Mk

s (ψ) and reads

Mk
s (ψ) = {|�〉 ∈ ICk ⊗ ICk s.t. |�〉 LOCC−−−→ |ψ〉}. (21)

In fact, we can identify |ψ〉 with a state |�k(ψ)〉 ∈
ICk ⊗ ICk that has the Schmidt vector λ(�k(ψ)) =
(λ1, . . . ,λd,0, . . . ,0) ∈ IRk , where we simply appended k − d

zeros to the initial, d-dimensional Schmidt vector of |ψ〉. The
volume corresponding to Mk

s (ψ) is then given by V k
s (ψ) =

Vs(�k(ψ)). In this way we obtain a whole class of operational
entanglement measures that are a generalization of the source
entanglement presented in Lemma 1 and that read

Ek
s (ψ) = 1

sup|φ〉∈H Es(�k(φ))
Es(�k(ψ)) k � d. (22)

Here we divided by the supremum over all |φ〉 ∈ ICd ⊗ ICd such
that the range of Ek

s (ψ) is [0,1]. Note that these generalizations
include the initial source entanglement for k = d. Ek

s (ψ)
is a polynomial of degree at most k − 1 in d − 1 Schmidt
coefficients of |ψ〉, where the remaining coefficient is given
by normalization. We thus have explicit formulas for a whole
class of operational entanglement measures that quantify the
set of LU-inequivalent, bipartite pure states with the same
or higher dimension that can be transformed to a given
bipartite state, |ψ〉, via LOCC. Stated differently, the set of
measures {

Ek
s (ψ)

}
k�d

(23)

characterizes how easy it is to generate a single copy of |ψ〉
from a single copy of another bipartite pure state via LOCC.

C. Accessible volume

We consider now the accessible set given in Eq. (8) for
a state |ψ〉 whose sorted Schmidt vector is given by λ(ψ) =
λ↓(ψ). As seen from Eq. (8) this set is the intersection of the
half spaces defined by the inequalities

Ek(λ′) � Ek(λ(ψ)) ∀k ∈ {1, . . . ,d − 1}, (24)

λ′
1 � λ′

2 � . . . � λ′
d � 0. (25)

Our aim is now to compute the volume of this convex
polytope. Let us first note that we consider here only the LU-
equivalence classes as we are fixing the order of the Schmidt
coefficients. Any other fixed order would obviously also
represent all LU classes, despite the fact that the corresponding
vectors belong to a different subset of IRd . Moreover, the
volume of these different sets is the same. In contrast to
the source set, they are, however, not connected in general
and the union of these sets of differently sorted vectors that
majorize λ(ψ) would not lead to a convex set. In order to
see that consider λ(ψ) and λ′ = (1,0, . . . ,0), i.e., the Schmidt
vector corresponding to a separable state. Clearly, it holds
that λ′ � λ(ψ). However, the set is in general not convex,
as 1/2λ′ + 1/2Pτ1,2λ

′ � λ if λ1 > 1/2. The above-mentioned
properties of the union of the different representations of the
accessible set is the reason why we do not consider this set,
although we used such an approach in case of the source
set. However, the accessible set defined by the half spaces in
Eq. (24) is, as the source set was, a convex set.

Let us now demonstrate how the volume of Ma(ψ) can
be computed. To do so, we first determine the vertices of
the accessible set. Thereby, it is useful to get rid of the last
Schmidt coefficient, which is determined by the normalization
condition, i.e., λd = 1 − Ed−1(λ). Hence, from now on, we
consider the Schmidt vectors as d − 1-dimensional vectors
and the H representation of the accessible set is given by

Ek(λ′) � Ek(λ(ψ)) ∀k ∈ {1, . . . ,d − 1}, (26)

λ′
1 � . . . � λ′

d−1 � 1 − Ed−1(λ′) � 0. (27)

A vertex of Ma , vi , is the unique vector in Ma ⊂ IRd−1, where
d − 1 independent inequalities are satisfied as equations. Let
us remark here that the method to calculate the vertices of
the accessible set and its volume differs from the one used
to calculate the source volume, as we will explain in the
following. To determine the source volume, we calculated the
(d − 1)-dimensional volume of the source set that is contained
in A ⊂ IRd (respectively U , after a translation). This is why
we had to, at least conceptually, transform into an orthonormal
basis of U . To calculate the accessible volume, however, we
abandoned the last Schmidt coefficient. As a result, the H

representation in Eqs. (26) and (27) describes the projection
of the accessible volume that is contained in A ⊂ IRd onto the
subspace spanned by the first (d − 1) standard basis vectors.
Subsequently, we identified this subspace with IRd−1. As shown
in Appendix B, the resulting volume is 1/

√
d times as big as

the original one. However, this constant factor is at the end
irrelevant as we rescale the volume in order to obtain the
accessible entanglement [see Eq. (1)].

Let us now consider the determination of the vertices of the
accessible set. Note that λ(ψ) is always a vertex as it obeys all
d − 1 inequalities in Eq. (26) as equalities. As we have 2d − 1
inequalities, there can exist at most

(2d−1
d−1

)
vertices. Clearly,

there will be much less in general. Consider for instance for
d = 4 the state 1/100(30,27,24,19) that has 10 vertices, while
the state 1/10(4,3,2,1) has only eight, which is a lot less
than

(7
3

) = 35. As can be seen from these examples, even the
number of vertices depends also for nondegenerate states very
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strongly on λ(ψ). Furthermore, it is not clear if the accessible
set is always a simple polytope for nondegenerate states. These
are probably the reasons why it is difficult to derive a closed
expression for the vertices or the volume of the accessible set
given some state corresponding to the Schmidt vector λ(ψ).
The vertices can, however, be easily computed for a given
λ(ψ), as we will briefly explain in the following.

Assume that one vertex, v1, is known [e.g., λ(ψ) in the
case of the accessible set]. Let Ω̃1 denote a set of d − 1
independent inequalities which are fulfilled as equalities for
the given vertex. In order to find a neighboring vertex, pick one
inequality which is in Ω̃1 and replace it by an inequality from
the H representation which is not in Ω̃1. The vector in IRd−1

satisfying these inequalities now as equalities (and of course
obeying all other inequalities) is a neighbor of v1, as it is an
element of d − 2 facets that also contain v1. One can continue
in this way until one finds all possible vertices.

In the literature there exist several algorithms for computing
the vertices and the volume of arbitrary convex sets. The reader
is referred to Ref. [28] for a review on the basic properties of
some algorithms for volume computation. Usually the volume
is computed by using either the so-called triangulation method
or the signed decomposition method. In the former method the
polytope is decomposed into simplices with mutually disjoint
interior such that the volume of the whole polytope is the
sum of the volumes of the individual simplices. In the latter
method the simplex is decomposed into signed simplices, i.e.,
simplices to which a positive or negative sign is associated, that
are allowed to overlap. These are then, depending on their sign,
added or subtracted successively in order to obtain the volume
of the polytope. We will use here the algorithm presented in
Ref. [29] to calculate all vertices of the accessible polytope.
Although one can find the vertices using the method outlined
above, the aim is of course to perform the computation using
few resources. In Ref. [29] it has been shown that by choosing
the inequalities that have to be interchanged as explained above
according to certain rules, the vertices can be found easily. In
fact, the algorithm finds the N vertices of a polytope in IRd−1

defined by a nondegenerate system of 2d − 1 inequalities in
time O(d2N ) and O(d2) space. Note, however, that N can in
principle grow exponentially with d. A revised version of the
algorithm presented in Ref. [30] is also capable of computing
the volume of the convex polytope using the triangulation
method described above.

Whereas the numerical methods described above can be
utilized to compute the accessible volume for arbitrary states,
we present in Sec. III D some examples of bipartite systems of
small dimension for which we computed analytic expressions
for the vertices, the corresponding accessible volume and the
associated accessible entanglement. Note that, similarly to the
source entanglement, also the accessible entanglement can
be generalized by considering different Hilbert spaces of the
initial state and the state in the accessible set (Ref. [14], see
Sec. III D for examples).

Before concluding this subsection, let us present some states
which always correspond to vertices of the accessible polytope.
The reason for doing so is that the knowledge of the vertices
of the accessible set allows us to gain more insight into the
entanglement properties of the state. The following vectors
are always vertices of the accessible set of a state with sorted

Schmidt vector λ(ψ) = (λ1, . . . ,λd ),

v1 = (λ1,λ1, . . . ,λ1,λnorm,1,0, . . . ,0), (28)

v2 = (λ1,λ2,λ2, . . . ,λ2,λnorm,2,0, . . . ,0), (29)

. . .

vd−2 = (λ1,λ2,λ3, . . . ,λd−2,λd−2,λnorm,d−2), (30)

where 0 � λnorm,i � λi is such that all components add up
to 1. The reason for that is that vi obviously majorizes λ(ψ)
and is an element of d − 1 facets of the accessible set. More
precisely, vi satisfies i of the inequalities from Eq. (26) and
d − 1 − i inequalities from Eq. (27) as equalities. Note that
these d − 1 inequalities are independent such that vi is indeed
a vertex. Furthermore, all maximally entangled states of two
k-level systems, |φ+

k 〉, i.e., states where the first k entries of the
sorted Schmidt vector are 1/k and the remaining ones are zero,
are in the accessible set if and only if λ1 � 1/k. To see this,
note that this criterion is equivalent to E1(φ+

k ) � E1(λ(ψ)).
Since λ(ψ) is sorted, this implies that Ei(φ

+
k ) � Ei(λ(ψ)) for

all i and therefore [see Eq. (4)] that |φ+
k 〉 is accessible from

|ψ〉. It is straightforward to show that λ(φ+
k ) is in this case also

a vertex of the accessible polytope that fulfills d − 1 of the
inequalities in Eq. (27) as equalities.

D. Source and accessible volume for low-dimensional
bipartite systems

In this section we use the results obtained above in order to
compute the accessible as well as the source entanglement of
bipartite systems. More specifically, we present the source and
accessible set of small dimensional systems, i.e., d = 2,3,4
in Figs. 2–4, and briefly discuss their properties. By means
of these figures we can also derive closed expressions for the
accessible volume of a state of two qubits or two qutrits.

1. Two qubits

In the simplest example of a two-qubit state there exists
only one independent Schmidt coefficient such that the source
and accessible volume of a state with sorted Schmidt vector
λ(ψ) = (λ,1 − λ) read

Ms(ψ) = {(λ′
1,1 − λ′

1) s.t. 1/2 � λ′
1 � λ},

Ma(ψ) = {(λ′
1,1 − λ′

1) s.t. λ � λ′
1 � 1}.

Consequently, the two sets are complementary in the sense
that their union results in the whole state space and there do
not exist LOCC-incomparable states. That is, given two states
one of them can always be converted into the other via LOCC.
For this simple example the volumes can be directly read off
from Fig. 2 , in which both sets are depicted for a given state.
It is easy to see that the source and accessible volume of a
two-qubit state |ψ〉 are given by

Vs(ψ) =
√

2(λ1 − 1/2),

Va(ψ) =
√

2(1 − λ1).

Using these formulas it is straightforward to see that the source
and accessible entanglement [see Eqs. (1)] of a two-qubit state
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λ110

1

λ2

λ

FIG. 2. (Color online) The source and accessible set of a two-
qubit state with sorted Schmidt vector λ = (0.6,0.4). The line that
connects the points e1 = (1,0) and e2 = (0,1) corresponds to the set of
valid, i.e., normalized, Schmidt vectors. The shaded region highlights
the set of sorted Schmidt vectors that is in one-to-one correspondence
to the LU-equivalence classes. The red (upper) [blue (lower)] lines
in this region depict the source (accessible) volume of the quantum
state respectively.

are in fact identical and given by

Es(ψ) = Ea(ψ) = 2(1 − λ1).

Clearly, each of them gives a unique characterization of the
entanglement contained in a two-qubit state, i.e., they allow to
recover its Schmidt coefficients.

2. Two qutrits

Let us proceed with the investigation of a system of two
qutrits. In contrast to the two-qubit case one can find two-
qutrit states that are LOCC incomparable. Consequently, the
source and accessible set of a generic two-qutrit state are not
complementary, as can be seen in Fig. 3. More precisely, their
union does not lead to the whole state space. Moreover, one
can easily see that representations of the accessible set that
correspond to different orderings of the Schmidt coefficients
are not connected to each other. In contrast, the union of the
corresponding representations of the source set, i.e., MLU

s (ψ),
is a convex set. We use Eq. (19) to obtain the source volume of
a state |ψ〉. Based on Fig. 3 we can also calculate its accessible
volume using elementary geometry. That is, we subdivide the
accessible set into mutually disjoint triangles. The shape of
the accessible set, and with it the triangulation, depends on the
largest Schmidt vector, λ1, of the state. This can be easily seen
in Fig. 3. The volume of a triangle with vertices v1, v2, and v3

is then given by the formula 1/2|(v2 − v1) × (v3 − v1)|, where
a × b denotes the cross product between vectors a,b ∈ IR3. In
analogy to the generalization of the source volume discussed
in Sec. III B we moreover compute V 2

a (ψ), i.e., the volume
of accessible states with at least one zero Schmidt coefficient.
Stated differently, we compute the volume of two-qubit states

1 1

1

λ1 λ2

λ3

(1/2,1/2,0)

1

λ

(a)

(b)

λ

λ

λ

FIG. 3. (Color online) (a) The source and accessible set of a
two-qutrit state with sorted Schmidt vector λ = (0.6,0.37,0.13). The
triangle with the three vertices e1 = (1,0,0), e2 = (0,1,0), and e3 =
(0,0,1) corresponds to all valid, i.e., normalized, Schmidt vectors. The
thick, dashed line encloses the set of sorted Schmidt vectors that is
in one-to-one correspondence to the LU-equivalence classes. The red
(pentagonal) [blue (V-shaped)] regions depict the source (accessible)
set of the quantum state respectively. The hyperplanes that correspond
to the half spaces defining the set MLU

s (ψ) are also indicated by the
dotted lines. The white dot corresponds to the maximally entangled
state |φ+

2 〉 of two qubits with Schmidt vector (1/2,1/2,0). Since the
depicted state has λ1 > 1/2 the state |φ+

2 〉 is not an element of its
accessible set. Its accessible set has four vertices. (b) The source
and accessible volume of a two-qutrit state with sorted Schmidt
vector λ = (0.47,0.36,0.17). In contrast to the state in (a), this state
fulfills λ1 < 1/2 s.t. the source volume contains the state |φ+

2 〉 and
the accessible volume has five vertices.

that is accessible from |ψ〉. We obtain the volumes

Vs(ψ) = 6λ2λ3 − 3λ2
2 + 6(λ3 − 1)λ3 + 1

4
√

3
,

Va(ψ) =
{√

3λ2λ3 if λ1 > 1
2√

3
[
λ2λ3 − 1

4 (1 − 2λ1)2
]

if λ1 � 1
2

V 2
a (ψ) =

{√
2(1 − λ1) if λ1 > 1

2√
2

2 if λ1 � 1
2 .

Starting from a state |ψ〉 with three nonzero Schmidt co-
efficients one can, as pointed out in Sec. III C, access the
maximally entangled state of two-qubits, |φ+

2 〉, with Schmidt
vector λ(φ+

2 ) = (1/2,1/2,0), if and only if λ1 � 1/2. It is clear
that in this case one can obtain any two-qubit state. This is why
such a state maximizes V 2

a (ψ). It is straightforward to compute
the entanglement measures from the volumes above. We obtain

Es(ψ) = 3λ2
2 − 6λ2λ3 − 6(λ3 − 1)λ3,

Ea(ψ) =
{

12λ2λ3 if λ1 > 1
2

12[λ2λ3 − 1/4(1 − 2λ1)2] if λ1 � 1
2

E2
a(ψ) =

{
2(1 − λ1) if λ1 > 1

2

1 if λ1 � 1
2 ,
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0.4

0.6

0.8

0.0

0.2

0.1

0.2

0.3

λ1

λ2

λ3

λ

FIG. 4. (Color online) The source and accessible set of a
state of two four-level systems with sorted Schmidt vector λ =
(0.4,0.3,0.2,0.1). The valid, i.e., normalized, Schmidt vectors corre-
spond to all states in the set {(λ1,λ2,λ3) s.t. λi � 0,

∑3
i=1 λi � 1}. The

last coefficient is given by normalization. The convex set indicated by
the shaded region (including the red and the blue region) highlights
the set of sorted Schmidt vectors that is in one-to-one correspondence
to the LU-equivalence classes. The red (left) [blue (right)] regions
depict the source (accessible) set of the quantum state respectively.
The vertices of the accessible set and its volume have been computed
with the algorithm presented in Ref. [30] (see also Sec. III C). We
obtain Es(ψ) = 0.904 and Ea(ψ) = 87/125 ≈ 0.696 for the depicted
state.

where we defined E2
a(ψ) = V 2

a (ψ)
supφ V 2

a (φ) . Using Eq. (22) one can

furthermore calculate

E4
s (ψ) = 27

13

[
2λ3

2 + 6λ2
2λ3 + 3(3 − 4λ2)λ2

3 − 10λ3
3

]
.

Note that one can show that Es(ψ) together with E4
s (ψ)

uniquely characterize the entanglement contained in a quan-
tum state of two qutrits. That is, these two measures uniquely
define the Schmidt components of the state. Hence, its
entanglement is completely characterized by how many two-
qutrit states and states of two four-level systems can reach the
state at hand.

3. Two four-level systems

Finally, we also consider quantum states of two four-level
systems. Also for such a system we can depict the source and
accessible set of a given state (see Fig. 4), as they are at most
three dimensional. We could not give an analytic formula for
the accessible entanglement. However, the algorithm described
in Ref. [30] (see also Sec. III C) can be used to find the vertices
and the volume of the accessible set of a given two-qutrit state.
We used this algorithm to determine these properties for the
state depicted in Fig. 4. Analogously to before, the source

entanglement can be computed using Lemma 1. It is given by

Es(ψ) = 4λ3
2 + 12λ2

2λ3 − 24λ2
2λ4 − 24λ2λ

2
3 + 24λ2λ3λ4

+ 12λ2λ
2
4 − 20λ3

3 + 12λ2
3λ4 + 18λ2

3 + 48λ3λ
2
4

− 36λ3λ4 + 20λ3
4 − 30λ2

4 + 12λ4.

IV. ENTANGLEMENT OF MULTIPARTITE SYSTEMS

In the previous section we showed that one can obtain
explicit formulas for a whole class of new operational
entanglement measures that characterize how easy it is to
generate a single copy of a quantum state from a single copy
of another quantum state via LOCC. Moreover, in Ref. [14]
we proved that these measures can also be used to completely
characterize three-qubit entanglement. Here we will determine
the source and accessible entanglement of generic four-qubit
states.

Clearly the source and accessible volume can only be
computed if one knows all the possible LOCC transforma-
tions of the states of interest. Note that in contrast to the
bipartite case, the characterization of all possible LOCC
transformations is generally very difficult, as also protocols
involving infinitely many rounds of communication have to
be considered [15]. However, in this section we will derive
the necessary and sufficient conditions for the existence of a
LOCC transformation among pure states by completing the
results on deterministic state transformations of four-qubit
states presented in Ref. [9]. This criterion allows us then to
compute the two entanglement measures. Note that we want to
consider deterministic transformations among fully entangled
states, which are only possible among states within the same
SLOCC class. In Ref. [31] it was shown that there exist
infinitely many SLOCC classes for four-qubit states. Here,
we only consider generic four-qubit states, which belong to
the SLOCC classes denoted by Gabcd with representatives of
the form [31]

|�〉seed = a+d

2
(|0000〉+|1111〉) + a−d

2
(|0011〉+|1100〉)

+ b+c

2
(|0101〉+|1010〉) + b−c

2
(|0110〉+|1001〉),

(31)

with b,c,d ∈ IC, a ∈ IR and a2 + |b|2 + |c|2 + |d|2 = 1, a2 �=
b2,c2,d2, b2 �= c2 �= d2 �= b2 and the parameters fulfill
the condition that there exists no q ∈ IC \ {1} such that
{a2,b2,c2,d2} = {qa2,qb2,qc2,qd2}. These states are referred
to as the seed states, which are parametrized by six real
parameters, due to normalization and the global phase. Note
that Pij |�〉seed = σ i

x ⊗ σ
j
x |�〉seed for any particle permutation

Pij with i �= j , i,j ∈ {1,2,3,4}. That is, any seed state has the
property that permuting the particles leads to a LU-equivalent
state. Any state in some SLOCC class Gabcd can be written as
|�(g)〉 ≡ g|�〉seed, with a local invertible operator (not nec-
essarily determinant 1) g ∈ G, i.e., g = g1 ⊗ g2 ⊗ g3 ⊗ g4,
gi ∈ GL(2), and the corresponding seed state |�〉seed. Ignoring
for the moment the normalization, the positive operators
Gi = (gi)†gi fulfill without loss of generality tr(Gi) = 1.
Furthermore, they are positive full-rank operators written
as Gi = 1/21 +∑k γ i

k σk , with γ i
k ∈ IR and 0 � |γ i | < 1/2,

062340-9



D. SAUERWEIN et al. PHYSICAL REVIEW A 92, 062340 (2015)

where γ i = (γ i
1 ,γ i

2 ,γ i
3 ). Sometimes we will also use the

notation γ i
w with w ∈ {x,y,z} for the state parameters. Note

that the symmetries of the seed states are given by {σ⊗4
i }3

i=0,
i.e., σ⊗4

i |�〉seed = |�〉seed, for all i. These symmetries can only
simultaneously change the sign of two parameters γ i

k and γ i
l ,

with k,l ∈ {1,2,3}, k �= l, for all i. Thus, Gi can be made
unique [9]. By choosing gi =

√
Gi and sorting the parameters

of the seed states the form

|�(g1,g2,g3,g4)〉 = g|�〉seed (32)

is a unique standard form of the state |�(g1,g2,g3,g4)〉.
Therefore, generic four-qubit states are in the same LU-
equivalence class if and only if their standard forms coincide.
As we only consider representatives of LU-equivalence classes
for the computation of the source and accessible volume we
will pick the state |�(g1,g2,g3,g4)〉 as such.

In Ref. [9] the maximally entangled set (MES) for the
generic four-qubit states has been derived. The MES is
the minimal set of states from which any other genuinely
multipartite entangled state can be obtained via LOCC. It
has been shown that this set is of full measure for four-qubit
states, in contrast to two- and three-qubit states. The reason
for this is that most four-qubit states are isolated, meaning that
they can neither be reached nor converted into any other non
LU-equivalent state. Hence, for isolated states the source and
accessible volume vanish. The nonisolated states have been
shown to be (up to permutations of the local operators) [9]∣∣�(g1,g2

w,g3
w,g4

w

)〉 = g1 ⊗ g2
w ⊗ g3

w ⊗ g4
w|�〉seed, (33)

with gi
w ∈ span{1,σw}, such that Gi

w = (gi
w)†gi

w = 1/21 +
γ i

wσw, w ∈ {x,y,z} and arbitrary g1 as defined above. Note
that we will in the following choose the two parameters γ 1

1
and γ 1

2 non-negative and allow for negative values of the
third parameter γ 1

3 , i.e., γ 1
1 ,γ 1

2 ∈ [0,1/2), γ 1
3 ∈ (−1/2,1/2).

We can define the standard form of |�(g1,g2
w,g3

w,g4
w)〉 like

that, as the symmetries of the seed state can always change the
sign of two parameters of γ 1 simultaneously as mentioned
above. Hence, the nonisolated states form a 12-parameter
family. As only this zero measure set of states allows for
nontrivial LOCC transformations these are the only states we
need to consider here. Note that we consider here states up to
permutations of the parties as they do not alter the necessary
and sufficient conditions for LOCC convertibility and, hence,
we can easily compute the source and accessible volume of
the permuted states (see below). The nonisolated states in
the MES, that cannot be reached by any other state but can
access other states via LOCC, form a 10-parameter family with
g = g1

w ⊗ g2
w ⊗ g3

w ⊗ g4
w, w ∈ {x,y,z} (excluding gi

w �∝ 1 for
exactly one i) [9].

In the following we will derive the necessary and sufficient
conditions for LOCC transformations among generic four-
qubit states. Subsequently, we will always denote the state
of interest by |�(g1,g2,g3,g4)〉 as in Eq. (32) and the states
in the source or accessible set of the state of interest by
|�(h1,h2,h3,h4)〉 = h|�〉seed. Note that one obviously only
has to consider nonisolated states. First, one can easily show
that LOCC transformations exist only among very particular
pairs of states, as stated in the following observation which is
proven in Appendix C.

Observation 2. A state |�(g)〉 can be transformed to a
reachable state |�(h1,h2

w,h3
w,h4

w)〉 by LOCC only if g = g1 ⊗
g2

w ⊗ g3
w ⊗ g4

w, with the same w ∈ {x,y,z}.
Note that not any state of the form |�(h1,h2

w,h3
w,h4

w)〉 is
reachable, as stated in the next lemma, which has been proven
in Ref. [9].

Lemma 3. A generic nonisolated four-qubit state
|�(h1,h2

w,h3
w,h4

w)〉 = h|�〉seed can be reached via LOCC by
some other state |�(g1,g2

w,g3
w,g4

w〉, with w ∈ {x,y,z} if and
only if (up to permutations) one of the following conditions is
fulfilled:

(i) h = h1 ⊗ h2
w ⊗ h3

w ⊗ h4
w, with h1 �= h1

w, and at least
one i ∈ {2,3,4} such that hi

w �∝ 1 and h �= h1
v ⊗ h2

w ⊗ 1 ⊗ 1
for v �= w, v ∈ {x,y,z} or

(ii) h = h1
v ⊗ h2

w ⊗ 1 ⊗ 1, with h2
w �∝ 1, h1

v �∝ 1 and v �=
w, v ∈ {x,y,z}, or

(iii) h = h1 ⊗ 1 ⊗ 1 ⊗ 1, with h1 �∝ 1.
As before we call |�(h1,h2

w,h3
w,h4

w)〉 with h defined as in
one of the three above cases a reachable state. Note that the
reachable states are of course the nonisolated states excluding
the nonisolated states in the MES.

Let us now show from which states these states are
reachable. In order to do so, let us denote by γ i

k the real state pa-
rameters of |�(g1,g2

w,g3
w,g4

w)〉, e.g., G1 = (g1)†g1 = 1/21 +∑
k γ 1

k σk and by ζ i
k the state parameters of |�(h1,h2

w,h3
w,h4

w)〉
(with corresponding parameter vectors γ i and ζ i respectively).
Furthermore, we will use the notation γ 1

u(v) (and the same for
ζ 1
u(v)) whenever we consider both the u and v component of γ 1

for u �= v, u,v ∈ {1,2,3}.
Lemma 4. A state |�(g1,g2

w,g3
w,g4

w)〉 can nontrivially access
a reachable state |�(h1,h2

w,h3
w,h4

w)〉 within case (I ) of Lemma
3, I ∈ {i,ii,iii}, if and only if the following I th condition for
the reachable states holds.

(i) ζ i
w �= 0 for

(a) at least two i ∈ {1,2,3,4}, γ j
w = ζ

j
w for j = 1,2,3,4,

and γ 1
v(u) = (2p − 1)ζ 1

v(u) with p ∈ [1/2,1) and {v,w,u} =
{1,2,3}.

(b) exactly one i ∈ {2,3,4} and ζ 1
w = 0, ζ 1

v(u) �= 0 for
{v,w,u} = {1,2,3} and either the conditions from above
are fulfilled or γ k

w = 0 for all k �= i, k ∈ {1,2,3,4}, γ 1
v(u) = 0

and γ i
w � ζ i

w.
(ii) γ 3

w = γ 4
w = 0, γ 1

w(u) = 0, γ 2
w � ζ 2

w and γ 1
v � ζ 1

v , with
{v,w,u} = {1,2,3}.

(iii) γ i
w = 0 for i = 2,3,4 and either

(a) ζ 1
k �= 0 ∀k ∈ {1,2,3}. Then with rk = γ 1

k /ζ 1
k the

state parameters have to fulfill the three inequalities 1 +
r1 − r2 − r3 � 0, 1 − r1 + r2 − r3 � 0 and 1 − r1 − r2 +
r3 � 0, with 0 � r1(2) � 1 and −1 � r3 � 1.

(b) Or ζ 1
k = γ 1

k = 0 for exactly one k. Then ζ 1
i � γ 1

i

and ζ 1
j � γ 1

j with {i,j,k} = {1,2,3}.
(c) Or ζ 1

k �= 0 and thus, γ 1
k �= 0 for exactly one k. Then

ζ 1
k � γ 1

k with k ∈ {1,2,3}.
The proof of Lemma 4 can be found in Appendix C. Note

that Observation 2 together with Lemma 3 and Lemma 4
constitute the necessary and sufficient conditions for LOCC
convertibility among generic four-qubit states. We will use
them in the subsequent subsections to measure the entangle-
ment contained in these states and summarize them now in
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TABLE I. Summary of all possible nontrivial LOCC transformations of generic four-qubit states (up to permutations) with appropriate
necessary and sufficient conditions (see Lemma 4). Note that also the normalization condition on the parameter vector, i.e., 0 � |γ 1|,|ζ 1| < 1/2
has to be fulfilled together with the necessary and sufficient conditions in the third column of the table. In the fourth column of the table the
corresponding cases of Lemma 4 are given for each of the LOCC conversions.

Initial state Final state Necessary and sufficient conditions Case

|�(g1,g2
x,g

3
x,g

4
x)〉 |�(h1,g2

x,g
3
x,g

4
x)〉 γ 1

1 = ζ 1
1 and ∃p ∈ [1/2,1) s.t. (2p − 1)ζ 1

2(3) = γ 1
2(3) (ia)

|�(g1
y(z),g

2
x,1,1)〉 |�(h1

y(z),h
2
x,1,1)〉 γ 2

1 � ζ 2
1 and γ 1

2(3) � ζ 1
2(3) (ii)

|�(g1,1,1,1)〉 |�(h1,1,1,1)〉
g1 �∝ 1,g1

x,{i,j,k} = {1,2,3} and either
(1) ζ 1

i �= 0 and 1 − ri + rj − rk � 0 with ri = γ 1
i /ζ 1

i

(2) or ζ 1
k = 0 for exactly one k, γ 1

k = 0,ζ 1
i � γ 1

i and ζ 1
j � γ 1

j ,

(3) or ζ 1
k �= 0 and γ 1

k �= 0 for exactly one k and ζ 1
k � γ 1

k

(iiia)
(iiib)
(iiic)

|�(g1
x,1,1,1)〉 |�(h1,1,1,1)〉 ζ 1

1 � γ 1
1 (iiia)

|�(h1
x,h

2
y,z,1,1)〉 ζ 1

1 � γ 1
1 (ib)

|�〉seed |�(h1,1,1,1)〉 (iiia)

|�(h1
w,h2

u,v,1,1)〉 (ib)

the following table. We choose from now on without loss of
generality w = x.

Due to the fact that the criterion for the existence of a
LOCC protocol does not depend on the seed parameters, it
is evident that the measures will only depend on the state
parameters and not on the seed parameters. To be more
precise, we denote by |�(a,b,c,d)〉seed the seed state given
in Eq. (31). Then the source and accessible entanglement
of a state g1 ⊗ g2 ⊗ g3 ⊗ g4|�(a,b,c,d)〉seed coincides with
the corresponding entanglement of the state g1 ⊗ g2 ⊗ g3 ⊗
g4|�(ã,b̃,c̃,d̃)〉seed for any choice of the seed parameters
a,b,c,d and ã,b̃,c̃,d̃ .

A. The source and accessible volume of generic four-qubit states

Given the necessary and sufficient conditions for LOCC
convertibility of the previous section, we will now compute the
source and accessible volume of a state |�(g1,g2

w,g3
w,g4

w)〉 =
g|�〉seed. Recall that we consider only fully entangled
four-qubit states in the source and accessible set of
|�(g1,g2

w,g3
w,g4

w)〉. Note, furthermore, that we will use the
freedom of choosing different measures μ for computing
the source and accessible volume, as explained in Sec. II.
Whenever the source or accessible states of certain states live
in manifolds of different dimensionality, we choose different
measures to compute their volumes (see also Ref. [14]).
Otherwise, we would assign zero values to the volumes of some
states, even though they can be reached or accessed by other
states. Hence, by using different measures for the computation
of the volumes we can compare the relative strength of states
whose volumes have the same dimension and, moreover,
regard, e.g., states with a two-dimensional accessible volume
obviously as infinitely more powerful than states with a one-
dimensional accessible volume. We choose, as stated before,
without loss of generality w = x, i.e., |�(g1,g2

x,g
3
x,g

4
x)〉 =

g1 ⊗ g2
x ⊗ g3

x ⊗ g4
x |�〉seed, as all the other cases can be treated

analogously. We will in the following consider the computation
of the volumes of states, for which different necessary and
sufficient conditions have to hold, in the same order as in
Table I. Hence, we start by computing the source and accessible
volume of a generic state |�(g1,g2

x,g
3
x,g

4
x)〉 with γ i

x �= 0 for at

least two i ∈ {1,2,3,4} (see Lemma 4 [case (ia)]), which is
not in the MES, i.e., g1 �= g1

x . As before we denote by γ 1
k the

parameters of g1 and by ζ 1
k the parameters of h1. Due to Lemma

4 [case (ia)] the accessible set of parameters ζ 1 = (ζ 1
1 ,ζ 1

2 ,ζ 1
3 )

is given by{
ζ 1 s.t. |ζ 1| < 1/2 , ζ 1

1 = γ 1
1 ,

and ∃p, 1/2 � p < 1 s.t. (2p − 1)ζ 1
2(3) = γ 1

2(3)

}
.

(34)

Note that the first condition on the norm of the vector ζ 1 is due
to the fact that H 1 has to be positive semidefinite. Therefore,
the accessible volume of |�(g1,g2

x,g
3
x,g

4
x)〉 with γ i

x �= 0 for
at least two i ∈ {1,2,3,4} is a one-dimensional line as the
two parameters ζ 1

2 and ζ 1
3 can only be increased by the same

proportion (see Fig. 5). Then from the conditions in Eq. (34)
we get for any reachable state that ζ 1

3 = ζ 1
2 γ 1

3 /γ 1
2 and γ 1

2 <

FIG. 5. (Color online) Source [red (central segment)] and ac-
cessible [blue (side segments)] sets, Ms and Ma [see Eqs. (35)
and (37) for the volumes], of a generic four-qubit accessible state
|�(g1,g2

x,g
3
x,g

4
x)〉 with parameters γ 1

1 = 0.15, γ 1
2 = 0.2, and γ 1

3 =
0.1. The shaded region corresponds to valid states in the standard
form which are in one-to-one correspondence with LU-equivalence
classes.
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ζ 1
2 <

√
(1/4 − (γ 1

1 )2)/(1 + (γ 1
3 /γ 1

2 )2) (γ 1
2 can be chosen non-

negative in the standard form). Hence, the one-dimensional
volume is determined by a line integral which results in

Va

(∣∣�(g1,g2
x,g

3
x,g

4
x

)〉)=√1/4−(γ 1
1

)2−√(γ 1
2

)2+(γ 1
3

)2
. (35)

Thus, with V
sup
a = 1/2 we get for the accessible entangle-

ment Ea(|�(g1,g2
x,g

3
x,g

4
x)〉) = 2Va(|�(g1,g2

x,g
3
x,g

4
x)〉). Note

that we obtain here and in the following the supremum of
the accessible (source) volume by simply optimizing the
corresponding volume, which is in this case given by Eq. (35),
over the valid parameter space. Obviously, we get similar
expressions for the accessible volume of the states given by
permutations of the parties of |�(g1,g2

x,g
3
x,g

4
x)〉, e.g., for the

state |�(g1
x,g

2,g3
x,g

4
x)〉 the accessible volume is the same as in

Eq. (35) with γ 1
k replaced by γ 2

k for k = 1,2,3.
Let us now compute the source volume of the state

|�(g1,g2
x,g

3
x,g

4
x)〉. Due to Lemma 4 [case (ia)] the parameters

of all states in the source set of |�(g1,g2
x,g

3
x,g

4
x)〉 with γ i

x �= 0
for at least two i ∈ {1,2,3,4} (the other cases are treated below)
are elements of the set{

ζ 1 s.t. γ 1
1 = ζ 1

1 and ∃p, 1/2�p < 1 s.t.

(2p − 1)γ 1
2(3) =ζ 1

2(3)

}
. (36)

It is easy to see that |ζ 1| � |γ 1| and thus |ζ 1| < 1/2 is
fulfilled for all vectors ζ 1. Hence, the source volume of
|�(g1,g2

x,g
3
x,g

4
x)〉 is again a one-dimensional line defined by

ζ 1
2 < γ 1

2 and the other parameter is fixed by ζ 1
3 = ζ 1

2 γ 1
3 /γ 1

2 .
Therefore, we obtain the following source volume:

Vs

(∣∣�(g1,g2
x,g

3
x,g

4
x

)〉) =
√(

γ 1
2

)2 + (γ 1
3

)2
. (37)

The corresponding source entanglement measure is
with V

sup
s = 1/2 given by Es(|�(g1,g2

x,g
3
x,g

4
x)〉) = 1 −

2Vs(|�(g1,g2
x,g

3
x,g

4
x)〉). Note again that we get similar ex-

pressions for the source volume of the states that are given
by permutations of the parties of |�(g1,g2

x,g
3
x,g

4
x)〉 by simply

replacing γ 1
k with γ i

k for i ∈ {2,3,4}.
Let us now consider states of the form |�(g1

x,g
2
x,g

3
x,g

4
x)〉,

where at least two state parameters are nonvanishing, i.e.,
nonisolated states in the MES that are not the seed state. For
these states the last conditions of Lemma 4 [case (ia)] are
fulfilled by choosing p = 1/2, as γ 1

2 = γ 1
3 = 0. Hence, a state

in the MES can reach any state of the form |�(h1,g2
x,g

3
x,g

4
x)〉,

as long as γ 1
1 = ζ 1

1 and |ζ 1| < 1/2. Moreover, the local
operator of each of the parties can be changed, that is, for
instance, the state |�(g1

x,g
2
x,h

3,g4
x)〉 can be reached as long as

the corresponding conditions mentioned above are satisfied.
Hence, the accessible set of parameters is given by{

ζ i s.t. |ζ i | < 1/2 and γ i
1 = ζ i

1∀ i ∈ {1,2,3,4}}. (38)

Therefore, the accessible volume of |�(g1
x,g

2
x,g

3
x,g

4
x)〉 is the

sum of four disks of radius Ri =
√

1/4 − (γ i
1 )2 for i ∈

{1,2,3,4}, i.e.,

Va

(∣∣�(g1
x,g

2
x,g

3
x,g

4
x

)〉)
= π

{[
1/4 − (γ 1

1

)2]+ [1/4 − (γ 2
1

)2]

0.4 0.2 0.0 0.2 0.4- -

-0.4

-0.2

0.0

0.2

0.4

FIG. 6. (Color online) Source [red (central rectangle)] and acces-
sible [blue (corner rectangles)] sets, Ms and Ma [see Eqs. (41) and
(43) for the volumes], of a four-qubit accessible state of the form
|�(g1

y,g
2
x,1,1)〉 with parameters γ 2

1 = 0.1, γ 1
2 = 0.3. The dashed

line encloses the gray area of valid states in the standard form
corresponding to LU-equivalence classes. Hence, only states inside
this gray area, where each of them is a representative of one
LU-equivalence class, are in the source or accessible set.

+ [1/4 − (γ 3
1

)2]+ [1/4 − (γ 4
1

)2]}
. (39)

It can be easily seen that the supremum of the ac-
cessible volume is given by V

sup
a = π . Thus, we ob-

tain for the accessible entanglement of convertible states
in the MES Ea(|�(g1

x,g
2
x,g

3
x,g

4
x)〉) = [1/4 − (γ 1

1 )2] + [1/4 −
(γ 2

1 )2] + [1/4 − (γ 3
1 )2] + [1/4 − (γ 4

1 )2]. The source volume
of states in the MES is zero, as no state can reach a
state in the MES via LOCC, i.e., Vs(|�(g1

x,g
2
x,g

3
x,g

4
x)〉) = 0

and, hence, the source entanglement is equal to 1, i.e.,
Es(|�(g1

x,g
2
x,g

3
x,g

4
x)〉) = 1.

Let us now consider the source and accessible volume of
states as in Lemma 3 [case (ii)]. Here, we choose without
loss of generality states of the form |�(g1

y,g
2
x,1,1)〉 = g1

y ⊗
g2

x ⊗ 1 ⊗ 1|�〉seed. Due to Lemma 4 these states can only be
transformed into states of the form |�(h1

y,h
2
x,1,1)〉 (see also

Table I, second row). The necessary and sufficient conditions
for deterministic transformations into such a state are given
in Lemma 4 [case (ii)], which imply that the accessible set of
parameters is{(

ζ 1
2 ,ζ 2

1

)
s.t. γ 1

2 < ζ 1
2 and γ 2

1 < ζ 2
1

}
. (40)

Hence, the accessible volume is equal to the area of a rectangle
(see Fig. 6), i.e.,

Va

(∣∣�(g1
y,g

2
x,1,1

)〉) = (1/2 − γ 1
2

)(
1/2 − γ 2

1

)
. (41)

Then, with V
sup
a = 1/4, the corresponding entanglement mea-

sure is equal to Ea(|�(g1
y,g

2
x,1,1)〉) = 4Va(|�(g1

y,g
2
x,1,1)〉).

For the source volume of |�(g1
y,g

2
x,1,1)〉 the conditions on the

parameters of states of the form |�(h1
y,h

2
x,1,1)〉 in the source
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set are given by

{(
ζ 1

2 ,ζ 2
1

)
s.t. γ 1

2 > ζ 1
2 and γ 2

1 > ζ 2
1

}
, (42)

and thus the volume is again equal to the area of a rectangle
(Fig. 6), i.e.,

Vs

(∣∣�(g1
y,g

2
x,1,1

)〉) = 4γ 1
2 γ 2

1 . (43)

The source entanglement is given by Es(|�(g1
y,g

2
x,1,1)〉) =

1 − Vs(|�(g1
y,g

2
x,1,1)〉), as V

sup
s = 1.

Next we examine the source and accessible volume of states
of the form |�(g1,1,1,1)〉 as in Lemma 3 [case (iii)] (see also
Table I third row). Let us assume for now that none of the
state parameters is vanishing, i.e., γ 1

i �= 0 and ζ 1
i �= 0, i ∈

{1,2,3}. The necessary and sufficient conditions for possible
LOCC transformations of these states already show that the
corresponding volumes are always three dimensional, as one
can vary all three γ 1

i parameters in accordance with the three
inequalities given in Lemma 4 [case (iiia)]. Hence, all states
|�(h1,1,1,1)〉 are in the accessible set of |�(g1,1,1,1)〉 if the
parameters fulfill

{ζ 1 s.t.|ζ 1| < 1/2 and 1+ri−rj−rk�0

for {i,j,k} = {1,2,3}}, (44)

where rl = γ 1
l /ζ 1

l . Note that in case g1 = g1
w with w ∈ {x,y,z}

additional LOCC transformations are possible, implying that
more states are accessible (see below). For that reason we
consider first the case g1 �= g1

w for any w ∈ {x,y,z}. With the
help of condition (44) one can compute the accessible volume
of any given state of the form |�(g1,1,1,1)〉. It is, however, not
easy to give a closed expression of the accessible volume for
arbitrary parameters of g1, as it is difficult to get the limits of the
integral that gives the accessible volume from condition (44).
However, given g1 this volume can be easily computed. Note
that for states with γ 1

k = 0 for exactly one k ∈ {1,2,3} also
states with ζ 1

k = 0 can be reached, see Lemma 4 [case (iiib)].
The part of the accessible volume containing only states with
ζ 1
k = 0 is two dimensional (as ζ 1

k = 0) and, hence, of measure
zero, as long as the three-dimensional accessible volume
exists. However, there are states |�(g1,1,1,1)〉 with γ 1

k = 0
for which condition (44) cannot be fulfilled, meaning that they
can only reach states with ζ 1

k = 0. Thus, for these states the
accessible volume is only two-dimensional as explained before
(see also below for the source volume of states with ζ 1

k = 0).
Let us now determine the source volume for states of

the form |�(g1,1,1,1)〉 in terms of the state parameters. We
consider first the case where none of the coefficients of g1 in
the Pauli basis vanish. For all states |�(h1,1,1,1)〉 in the source
set of |�(g1,1,1,1)〉 again the three inequalities 1 + ri − rj −
rk � 0 for {i,j,k} = {1,2,3} have to be fulfilled, where here
rl = ζ 1

l /γ 1
l (Lemma 4 [case (iiia)]). These inequalities also

imply the necessary conditions |γ 1
l | � |ζ 1

l | for l ∈ {1,2,3}.
Thus, it can be easily seen that the normalization condition on
the parameter vector, i.e., |ζ 1| < 1/2, is automatically fulfilled,
as |γ 1| < 1/2 holds. We can compute the source volume of
|�(g1,1,1,1)〉 by integrating over the valid parameter ranges

FIG. 7. (Color online) Source [red (left polyhedron)] and acces-
sible [blue (right)] sets, Ms and Ma [see Eqs. (44) and (45) for
the volumes], of a four-qubit accessible state |�(g1,1,1,1)〉 with
parameters γ 1

1 = 0.23, γ 1
2 = 0.13, and γ 1

3 = 0.15. The volume of the
quadrant of a sphere corresponds to a part of the accessible volume
of the seed state |�〉seed.

for the ζ 1
l given by the three inequalities and obtain

Vs(|�(g1,1,1,1)〉) =
∫∫∫

R(ζ 1
1 ,ζ 1

2 ,ζ 1
3 )

dζ 1

=
∫ 1

0

∫ r2

0

∫ 1+r1−r2

−1+r1+r2

γ 1
1 γ 1

2

∣∣γ 1
3

∣∣dr3dr1dr2

+
∫ 1

0

∫ 1

r2

∫ 1−r1+r2

−1+r1+r2

γ 1
1 γ 1

2

∣∣γ 1
3

∣∣dr3dr1dr2

= 2/3γ 1
1 γ 1

2

∣∣γ 1
3

∣∣. (45)

Note that out of mathematical convenience we made a change
of variables in the integral above. Hence, the source entangle-
ment is with V

sup
s = 1/(36

√
3) given by Es(|�(g1,1,1,1)〉) =

1 − 24
√

3γ 1
1 γ 1

2 |γ 1
3 |. In Fig. 7 we plot the source and accessible

volume of a state |�(g1,1,1,1)〉 of the above form. Both
volumes lie inside the quadrant of a sphere, which is a part
of the accessible volume of the seed state, as explained below.

Furthermore, the source volume of states of the form
|�(g1,1,1,1)〉 with vanishing parameters can be easily com-
puted with the help of the conditions in Lemma 4 [case
(iiib) and case (iiic)]. If there is one parameter vanishing,
i.e., without loss of generality γ 1

1 = 0, the two-dimensional
source volume is given by Vs(|�(g1,1,1,1)〉) = γ 1

2 γ 1
3 with

the source entanglement equal to Es(|�(g1,1,1,1)〉) = 1 −
4γ 1

2 γ 1
3 . Moreover, the source volume of a state with two

vanishing parameters, i.e., without loss of generality γ 1
1 =

γ 1
2 = 0, is one dimensional and reads Vs(|�(g1

z ,1,1,1)〉) = γ 1
3

with Es(|�(g1
z ,1,1,1)〉) = 1 − 2γ 1

3 .
Note also that there exist states of the form |�(g1,1,1,1)〉

for which the accessible volume consists of two sets that are
not connected (in the used parametrization). An example of
such a state is given in Fig. 8.
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FIG. 8. (Color online) Source [red (left polyhedron)] and acces-
sible [blue (right)] sets, Ms and Ma , of a four-qubit accessible state
|�(g1,1,1,1)〉 with parameters γ 1

1 = 0.09, γ 1
2 = 0.1, and γ 1

3 = 0.08.
Interestingly, the accessible set contains two sets that are not
connected.

Now we consider the accessible volume of states with g1 =
g1

x �= 0 (we choose again w = x without loss of generality)
and the seed state (see Table I, fourth and last rows). We
have to treat these two types of states separately as additional
transformations are possible for the seed states. Let us start
with the accessible volume of states of the form |�(g1

x,1,1,1)〉,
with g1

x �∝ 1. We have to split the computation of the accessible
volume of |�(g1

x,1,1,1)〉 into two parts, as these states can be
transformed into states of different forms (Table I, fourth row).
First, according to Lemma 4 [case (iiia)], these states can be
transformed via LOCC into all states of the form |�(h1,1,1,1)〉
fulfilling the two inequalities 1 ± r1 � 0 [32]. As we can
choose γ 1

1 ,ζ 1
1 � 0 the conditions above are equivalent to γ 1

1 �
ζ 1

1 . Furthermore, the two parameters ζ 1
2 ,ζ 1

3 can be changed
arbitrarily as long as they obey the condition on the norm, i.e.,
|ζ 1| < 1/2. Hence, the first part of the accessible volume of
|�(g1

x,1,1,1)〉 is given by

Va,1
(∣∣�(g1

x,1,1,1
)〉) =

∫ 1/2

γ 1
1

∫ √
1/4−(γ 1

1 )2

−
√

1/4−(γ 1
1 )2

∫ √
1/4−(γ 1

1 )2−(ζ 1
3 )2

0
dζ 1

2 dζ 1
3 dζ 1

1

=
∫ 1/2

γ 1
1

∫ π

0

∫ √
1/4−z2

0
rdrdθdz

= π/2

(
1

12
− γ 1

1

4
+
(
γ 1

1

)3
3

)
, (46)

where we converted the integral into cylindrical coordinates.
Furthermore, the state |�(g1

x,1,1,1)〉 can be transformed via
LOCC into all states of the form |�(h1

x,h
2
y,z,1,1)〉 (up to permu-

tations), with (h2
y,z)

†h2
y,z = 1/21 + ζ 2

2 σy + ζ 2
3 σz, see Lemma

4 [case (ib)]. The transformation is done by first converting
|�(g1

x,1,1,1)〉 into h1
x ⊗ 1⊗3|�〉seed and then converting this

state into the final state |�(h1
x,h

2
y,z,1,1)〉. Thus, the necessary

FIG. 9. (Color online) A part of the accessible set [blue
(shaded)], M2

a [see Eq. (47) for the volume], of a four-qubit state
|�(g1

x,1,1,1)〉 with γ 1
1 = 0.2. The volume is equal to 1/2 the volume

of a cylinder with height (1/2 − γ 1
1 ) and radius 1/2. The red line is the

source set of |�(g1
x,1,1,1)〉 (the source volume is one dimensional).

The volume of the larger set corresponds to a part of the cylinder
belonging to the accessible volume of the seed state, for which
γ 1

1 = 0.

and sufficient conditions on the parameters are γ 1
1 � ζ 1

1
(Lemma 4 [case (ib)]) and ζ 2

2 ,ζ 2
3 fulfilling the normalization

condition |ζ 2| < 1/2 (with ζ 2
1 = 0). This leads to the second

part of the accessible volume given by

Va,2
(∣∣�(g1

x,1,1,1
)〉) =

∫ 1/2

−1/2

∫ √
1/4−(ζ 2

3 )2

0

∫ 1/2

γ 1
1

dζ 1
1 dζ 2

2 dζ 2
3

= 1

16
π
(
1 − 2γ 1

1

)
. (47)

This part of the accessible volume of |�(g1
x,1,1,1)〉 is depicted

in Fig. 9 for a random state. Furthermore, all states given
by permutations of the local operators of |�(h1

x,h
2
y,z,1,1)〉

(e.g., |�(h1
x,1,h

2
y,z,1)〉) are also in the accessible set of

|�(g1
x,1,1,1)〉 and thus we have to count Va,2 three times.

Therefore, the total accessible volume is equal to

Va

(∣∣�(g1
x,1,1,1

)〉) = Va,1 + 3Va,2

= 1/48π
(
11 + 8γ 1

1

[(
γ 1

1

)2 − 3
])

. (48)

The accessible entanglement is then given by
Ea(|�(g1

x,1,1,1)〉) = 1 + 8/11γ 1
1 [(γ 1

1 )2 − 3] as V
sup
a = 11

48π .
Furthermore, we have to compute the source volume of a
state of the form |�(g1

x,g
2
y,z,1,1)〉 (Lemma 4 [case (ib)]), as

this state can be reached on the one hand by states of the form
|�(h1

x,1,1,1)〉 with ζ 1
1 � γ 1

1 as we have just seen (Table I,
fourth row). Hence, the first part of the one-dimensional
source volume of |�(g1

x,g
2
y,z,1,1)〉 is given by

Vs,1
(∣∣�(g1

x,g
2
y,z,1,1

)〉) =
∫ γ 1

1

0
dζ 1

1 = γ 1
1 . (49)
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On the other hand, according to Lemma 4 [case (ib)], all
states of the form |�(g1

x,h
2
y,z,1,1)〉 are also in the source set of

|�(g1
x,g

2
y,z,1,1)〉 (see Table I first row). Thus, the second part

of the source volume of |�(g1
x,g

2
y,z,1,1)〉 is given in Eq. (37),

where one simply has to replace γ 1
2(3) with γ 2

2(3). The total
source volume is obtained by taking the sum of both parts and
reads

Vs

(∣∣�(g1
x,g

2
y,z,1,1

)〉) = γ 1
1 +

√(
γ 2

2

)2 + (γ 2
3

)2
. (50)

As V
sup
s = 1 the source entanglement is given by

Es(|�(g1
x,g

2
y,z,1,1)〉) = 1 − Vs(|�(g1

x,g
2
y,z,1,1)〉). It is easy

to see that the accessible volume of states of the form
|�(g1

x,g
2
y,z,1,1)〉 is given by Eq. (35) (see Lemma 4 [case (ia)]),

where one again has to replace γ 1
i with γ 2

i for i ∈ {1,2,3} and
set γ 2

1 = 0.
Note that the seed state |�〉seed has the maximum accessible

volume, as we will show in the following. The seed state
can be transformed up to permutations into either states
of the form |�(h1,1,1,1)〉 with arbitrary h1, see Lemma 4
[case (iii)], or all states of the form |�(h1

w,h2
u,v,1,1)〉 with

{u,v,w} = {x,y,z}, see Lemma 4 [case (ib)] (Table I, last
row). Hence, the three-dimensional accessible volume of the
seed state is equal to 4 times 1/4 of the volume of a sphere
with radius 1/2 (|ζ 1| < 1/2 and ζ 1

1 > 0, ζ 2
1 > 0) plus 36 times

({u,v,w} = {x,y,z} and including all party permutations) 1/2
of the volume of a cylinder with radius 1/2 and height 1/2,
see Fig. 9 (

√
(ζ 2

u )2 + (ζ 2
v )2 < 1/2 and 0 � ζ 1

w < 1/2), i.e.,

Va(|�〉seed) = π/6 + 9/4π = 29/12π. (51)

Thus, any seed state obtains the maximum value for the
accessible entanglement, i.e., Ea(|�〉seed) = 1.

Summarizing the results on the accessible and source
entanglement of generic four-qubit states we highlight again
the three-dimensional accessible volume of the seed states,
which is the maximum accessible volume of all generic
states. This can already be seen in Table I, where in the
last row for a conversion from the seed state to other states
no additional necessary and sufficient conditions apart from
the condition on the norm of the parameter vectors ζ 1 have
to be fulfilled. Hence, the seed states can reach the most
other states deterministically via LOCC. Furthermore, when
considering transformations between states as in the first row
of Table I the states in the MES, i.e., |�(g1

x,g
2
x,g

3
x,g

4
x)〉,

have a two-dimensional accessible volume and they maximize
obviously the source entanglement, whereas states that are not
in the MES have in this case only a one-dimensional accessible
volume and are, therefore, infinitely less powerful than states
in the MES.

V. CONCLUSIONS

In Ref. [14] we have introduced two classes of entan-
glement measures for general multipartite quantum states:
the accessible entanglement and the source entanglement.
These measures have a clear operational meaning related
to the relative usefulness of the state under single-copy
deterministic LOCC manipulation. Moreover, whenever these
transformations can be characterized, the measures can be
computed. In Ref. [14] we showed this in the case of

three-qubit pure states and provided explicit formulas in these
cases for both Ea and Es . In this article we have further
demonstrated the applicability of our approach by analyzing
the case of bipartite pure states of arbitrary dimension and
of generic four-qubit pure states. In the first case, using tools
from convex geometry, we provide a closed expression for
the source entanglement of an arbitrary pure bipartite state of
Schmidt rank d considering all possible dimensions on which
Ms can be supported, {Ek

s }k�d . The accessible volume turns
out to be more complicated; however, there exist algorithms
that allow us to compute all measures {Ek

a}k�d . Moreover, in
the case of bipartite states of low dimension such as d = 2,3
we have also obtained analytic expressions for the accessible
entanglement. In the second case of four-qubit generic states,
we have completed the analysis of Ref. [9] characterizing all
possible LOCC conversions inside this class. Using this we
have provided explicit formulas for Ea and Es for all these
states.

The results presented here show the versatility and appli-
cability of the measures we introduced in Ref. [14], having
covered the most relevant classes of pure few-body entangled
states. We hope that having measures that are both computable
and with a clear operational meaning will help to understand
better the properties and potential applications of multipartite
quantum systems. For the future, our research opens several
directions for further investigation. First, it seems desirable
to analyze in detail more many-body cases with the aim of
obtaining closed expressions for our measures (or efficient
algorithms for their computation). In this context it would
also be interesting to exploit the results of Ref. [33] to try to
evaluate our measures for mixed states. Moreover, we would
like to connect our measures with applications. An interesting
option is to study the role of our measures as figures of merit for
known quantum information protocols. This could then lead
to the identification of the most relevant multipartite states
and maybe allow us to devise new applications of multipartite
entanglement. Also, we hope that our measures can bring new
insights to understand the interplay between entanglement and
many-body physics in, for example, phase transitions. Apart
from that, the investigation of LOCC transformations among
several copies of a given state and ε-LOCC transformations
[34] in this context will be relevant.

Note added in proof. Recently, we became aware of
Ref. [35], where the volume of polytopes of the form of MLU

s

in Eq. (13) was calculated.
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APPENDIX A: THE SOURCE VOLUME
OF NONGENERIC STATES

In this appendix we show that the formula for the source
volume given in Eq. (19), which was derived for states with
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nondegenerate Schmidt coefficients, is valid in general. This
derivation was based on the fact that MLU

s (ψ) is a simple
polytope for a generic state, such that the formula in Eq. (15)
was applicable to compute its volume. However, MLU

s (ψ) fails
to be simple in general for degenerate states, i.e., states with at
least two identical Schmidt coefficients. Consider, e.g., the
state with Schmidt vector λ(ψ) = (λ1,λ2,λ2,λ4) for which
λ2 = λ3. This vertex fulfills the four inequalities

E1
k (λ′) � Ek(λ(ψ)), k ∈ {1,2,3}

E
τ2,3

2 (λ′) � E2(λ(ψ)),

of the set Ω , which defines MLU
s (ψ) [see Eq. (11)], with

equality. Hence, λ(ψ) is an element of more than d − 1 = 3,
more precisely of four, facets which in turn implies that
the three-dimensional polytope is not simple. It is also
straightforward to show that λ(ψ) has more than d − 1 = 3
neighbors. Indeed, each of the following vertices:

(λ2,λ2,λ1,λ4),(λ1,λ4,λ2,λ2),

(λ2,λ1,λ2,λ4),(λ1,λ2,λ4,λ2),

is an element of d − 2 = 2 facets that also contain λ(ψ) and is
thus a neighbor of λ(ψ). We therefore conclude that Eq. (15)
is not directly applicable to nongeneric states.

However, in deriving Eq. (19) one obtains that

Vs(ψ) = 1

d!

√
d

(d − 1)!

d−1∏
k=1

|λk − λk+1|
λk − λk+1

×
∑
σ∈	d

[∑d
k=1 σ (k)λk − d+1

2

]d−1∏d−1
k=1 σ (k) − σ (k + 1)

. (A1)

Due to the denominator in the first product of Eq. (A1),
degenerate states must be treated with care in deriving a
simple expression for the source volume. We show that, for
any direction (along nondegenerate states) from which we
approach λ(ψ) within the subset of sorted Schmidt vectors, we
obtain in the limit Vs(ψ) [given by Eq. (19)] as the volume of
the source set. Stated differently, for any nondegenerate, sorted
Schmidt vector λ̃ and any ε > 0 we define the nondegenerate,
sorted Schmidt vector λ(λ̃,ε) = (1 − ε)λ(ψ) + ελ̃ for which
it holds that

lim
ε→0

Vs(λ(λ̃,ε)) = Vs(ψ), (A2)

with Vs(ψ) given by Eq. (19). Here we used that the set
of ordered Schmidt vectors is convex and that λ(λ̃,ε) is a
nondegenerate Schmidt vector for which Eq. (A1) is defined.
Let us now show that Eq. (A2) is valid. We denote by I the
set of all indices i ∈ {1, . . . ,d} for which λi = λi+1. Then we
obtain the following:

lim
ε→0

Vs(λ(λ̃,ε))

= 1

d!

√
d

(d − 1)!
lim
ε→0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∏
k /∈I

|(1 − ε)(λk − λk+1) + ε(λ̃k − λ̃k+1)|
(1 − ε)(λk − λk+1) + ε(λ̃k − λ̃k+1)︸ ︷︷ ︸

→1

·
∏
k∈I

|ε(λ̃k − λ̃k+1)|
ε(λ̃k − λ̃k+1)︸ ︷︷ ︸

→1

·
∑
σ∈	d

[∑d
k=1 σ (k)λ(λ̃,ε)k − d+1

2

]d−1∏d−1
k=1 σ (k) − σ (k + 1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 1

d!

√
d

(d − 1)!

∑
σ∈	d

[∑d
k=1 σ (k)λk − d+1

2

]d−1∏d−1
k=1 σ (k) − σ (k + 1)

= Vs(ψ).

As ε,λ̃k − λ̃k+1 > 0 the second product gives 1 and the limit
can be computed easily. We thus proved that formula Eq. (19)
for the source volume also holds for degenerate states and is
therefore applicable in general.

An example of a degenerate state is the maximally en-
tangled state |φ+〉 with Schmidt vector 1/

√
dφ+. Since the

maximally entangled state cannot be obtained from any other
state via LOCC its source volume has to be zero. Indeed, it
holds that

d∑
k=1

σ (k)(φ+)k − d + 1

2
= 1

d

d∑
k=1

σ (k) − d + 1

2
= 0.

If one inserts this expression into Eq. (19) it is easy to see that
Vs(φ+) = 0.

APPENDIX B: TWO DIFFERENT APPROACHES TO
COMPUTE THE SOURCE AND ACCESSIBLE VOLUME

In the main part we used two different ways to calculate the
(d − 1)-dimensional volume of convex polytopes in the space
A ⊂ IRd . In the first one, used in the derivation of the source
volume, we directly determined the volume by considering the
d-dimensional Schmidt vectors in this (d − 1)-dimensional
subspace of IRd . However, in order to determine the accessible
volume we considered the projection of the accessible volume
onto the subspace of IRd that is spanned by the first (d − 1)
standard vectors. That is, we treated the accessible polytope
as a subset of the set {(λ1, . . . ,λd−1)|λi � 0,

∑
i λi � 1} ⊂

IRd−1. However, in order to use the same measure for both the
source and the accessible volume, the volume element in the
subspace that contains the projection of the latter has to be
multiplied by the Jacobian of the coordinate transformation
that relates the two methods. As we explain in the following,
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this amounts to multiplying the volume of the projection of
the accessible set by a constant factor of

√
d.

We have to determine how a volume element expressed in
an orthonormal basis (ONB) of U = {λ ∈ IRd s.t.

∑
i λi = 0}

is related to a volume element in the projection on IRd−1, i.e.,
the subspace on which we project the accessible set. It is
straightforward to show that the following vectors are an ONB
of IRd ,

μ0 = φ+

μk = 1√
k
√

k + 1
(1, . . . ,1, − k,0, . . . ,0) fork∈ {1, . . . ,d−1},

where in μk a total of k entries of 1 are followed by one
entry of −k and zeros. The vectors {μk}d−1

k=1 are also an ONB
of U . If a vector λ ∈ IRd has coordinates (u0,u1, . . . ,ud−1)T

in this ONB, then its coordinates in the standard basis �λ =
(λ1, . . . ,λd−1,1 −∑d−1

i=1 λi)T are given by

�λ =
d−1∑
k=0

uk �μk, (B1)

where u0 = 1/
√

d for a normalized Schmidt vector. It is
therefore easy to find the d − 1 Schmidt coefficients {λi} as
a function of the coefficients {ui}. A volume element in U is
given by

∏d−1
i=1 dui , while a volume element in the projected

space is given by
∏d−1

i=1 dλi . It is well known that these volumes
are related by the Jacobian, ∂(λ1,...,λd−1)

∂(u1,...,ud−1) , according to

d−1∏
i=1

dλi = |det

(
∂(λ1, . . . ,λd−1)

∂(u1, . . . ,ud−1)

)
|
d−1∏
i=1

dui. (B2)

Using Eq. (B1) it is easy to show that∣∣∣∣det

(
∂(λ1, . . . ,λd−1)

∂(u1, . . . ,ud−1)

)∣∣∣∣

=
d−1∏
k=1

1√
k
√

k + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

−1 1 1 . . . 1

0 −2 1 . . . 1

0 0 −3 . . . 1
...

...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1√

d
.

Hence, we have that
∏d−1

i=1 dλi = 1√
d

∏d−1
i=1 dui and the volume

of the projection is
√

d times smaller than the original volume.
However, since this is a constant factor and since we rescale the
volumes in order to obtain the entanglement measures, the two
different ways to calculate the volumes of the convex polytopes
lead to the same result for the entanglement measures.

APPENDIX C: PROOF OF LOCC CONVERTIBILITY
CONDITIONS

In Ref. [9] many necessary and sufficient conditions for
LOCC transformations of generic four-qubit states were

obtained [in particular case (i) and case (iii) have been
considered there]. Whereas in Ref. [9] only the conditions
for a state to be reachable (or convertible) have been derived,
Lemma 4 gives the necessary and sufficient conditions for the
existence of a LOCC protocol. In order to prove Lemma 4
we use that LOCC is strictly contained in the set of separable
(SEP) operations, for which the criterion for their existence for
state transformations has been derived in Ref. [36]. Here we
first review these results and then use them to prove Lemma 4.

Let us denote by S(�seed) = {S ∈ G : S|�〉seed = |�〉seed}
the set of symmetries of the seed state, where G denotes the set
of local invertible operators. Then for g,h ∈ G the state |�〉 ∝
g|�〉seed can be transformed into the state |�〉 ∝ h|�〉seed via
SEP if and only if there exists a m ∈ IN, a set of probabilities
{pk}mk=1 and Sk ∈ S(�seed), such that [36]∑

k

pkS
†
kHSk = rG. (C1)

Here H = h†h, G = g†g are local operators and r =
‖|�〉‖2/‖|�〉‖2. This criterion is used in Ref. [9] to derive
the following necessary conditions for LOCC convertibility
of generic four-qubit states. For these states given in Eq. (32)
there are finitely many symmetries of the seed states given by
{σi}3

i=0. Hence, Eq. (C1) implies [9]

E4(H ) = E1(H 1) ⊗ E1(H 2) ⊗ E1(H 3) ⊗ E1(H 4), (C2)

where we used the same notation as in Ref. [9], i.e.,
H =⊗Hi . Here E4 is the completely positive map given
by Eq. (C1), i.e., E4(H ) =∑k pkσ

⊗4
k Hσ⊗4

k and El(ρ) =∑
k pkσ

⊗l
k ρσ⊗l

k . Note that by taking the trace of Eq. (C1) one
obtains r = 1. Furthermore, by tracing over the last two sub-
systems in Eq. (C3), one obtains E2(H 1 ⊗ H 2) = E1(H 1) ⊗
E1(H 2) (and similarly for other subsystems). Whereas this
equation has been used in Ref. [9] to identify the reachable
states, here we mainly use the necessary condition obtained by
tracing over all but one system, i.e.,

E1(H 1) = G1, (C3)

which is equal to �η⊙ ζ 1 = γ 1. We use again the same
notation as in Ref. [9] with

⊙
denoting the Hadamard

product (i.e., entrywise multiplication), �η = (η1,η2,η3)T , η0 =∑3
k=0 pk = 1, and ηi = p0 + pi − (pj + pk), with {i,j,k} =

{1,2,3}. Hence, we use the necessary and sufficient condition
for SEP transformations in Eq. (C1) to obtain necessary
conditions for the LOCC convertibility, Eq. (C3), and show
that they are also sufficient by constructing a corresponding
LOCC protocol.

1. Proof of Observation 2

Due to the fact that the nonisolated generic four-qubit
states are of the form g|�〉seed [9], with g ∈⋃w∈{x,y,z} Gw,
where Gw ≡ {g1 ⊗ g2

w ⊗ g3
w ⊗ g4

w,g1
w ⊗ g2 ⊗ g3

w ⊗ g4
w,g1

w ⊗
g2

w ⊗ g3 ⊗ g4
w,g1

w ⊗ g2
w ⊗ g3

w ⊗ g4}, we only need to consider
transformations among these states. First we show that
g|�〉seed with g ∈ Gw can only be transformed to a state
h ∈ Gw for the same value of w. This can be easily seen
by contradiction. Suppose that h ∈ Gv with v �= w. There
always exists an i ∈ {1,2,3,4} for which Eq. (C3) implies
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that E1(Hi
v) =∑k pkσkH

i
vσk = Gi

w. However, this cannot be
fulfilled for v �= w as σkH

i
vσk ∈ span{1l,σv} for any k, whereas

Gi
w ∈ span{1l,σw}. Hence, the transformation above is only

possible if v = w. For the remainder of the proofs we will
therefore set w = v = x in order to simplify notations. The
other cases, i.e., v = y,z, can be straightforwardly obtained
from that. A similar argument as above shows that the position
of the operators which do not only have a component in x

direction must coincide. That is, e.g., a transformation of the
form

g1
x ⊗ g2 ⊗ g3

x ⊗ g4
x |�〉seed

LOCC−−−→ h1 ⊗ h2
x ⊗ h3

x ⊗ h4
x |�〉seed

(C4)

is not possible. This completes the proof of Observation 2. �
Hence, due to Observation 2, the only possible transfor-

mations that have to be investigated for LOCC are (up to
permutations of the parties)

g1 ⊗ g2
x ⊗ g3

x ⊗ g4
x |�〉seed

LOCC−−−→ h1 ⊗ h2
x ⊗ h3

x ⊗ h4
x |�〉seed.

(C5)

2. Proof of Lemma 4

Note again that Lemma 4 [case (ia)] has been proven already
in Ref. [9]. For convenience we proof Lemma 4 [case (ib)] at
the end of this Appendix, as we use some of the results obtained
in the proofs of the other cases there. Hence, we go directly to
Lemma 4 [case (ii)], where transformations of the form (up to
permutations)

g1
y ⊗ g2

x ⊗ 1 ⊗ 1|�〉seed
LOCC−−−→ h1

y ⊗ h2
x ⊗ 1 ⊗ 1|�〉seed

(C6)

are considered. Obviously, the proof works analogously if
we choose g1

z instead of g1
y . It follows from Eq. (C3),

i.e., the condition E1(H 1
y ) = G1

y , that η2ζ
1
2 = γ 1

2 and, thus,
γ 1

2 can only be increased, i.e., γ 1
2 � ζ 1

2 . We determine a
simple positive-operator valued measure (POVM) with two
possible measurement outcomes that realizes the transfor-
mation. The POVM applied by the first party is given by
{√ph1

y(g1
y)−1,

√
1 − ph1

yσx(g1
y)−1} with p ∈ [0,1]. This is

indeed a POVM if (2p − 1)ζ 1
2 = γ 1

2 and can be implemented
by LOCC as for the second outcome all other parties
simply apply the LU σx . After applying this POVM the
state |�(h1

y,g
1
x,1,1)〉 is obtained. The second transformation

works analogously. Again, the parameter γ 2
1 can only be

increased by LOCC, i.e., γ 2
1 � ζ 2

1 . The second party applies
the POVM {√ph2

x(g2
x)−1,

√
1 − ph2

xσy(g2
x)−1}, which can also

be implemented by LOCC and thus Lemma 4 [case (ii)] is
proven.

For transformations of the form (Lemma 4 [case (iiia)])

g1 ⊗ 1 ⊗ 1 ⊗ 1|�〉seed → h1 ⊗ 1 ⊗ 1 ⊗ 1|�〉seed, (C7)

the necessary and sufficient condition for the existence of such
a separable transformations can be easily seen to be given by

[see Eq. (C3)]

G1 = E1(H 1) = 1/21 +
∑

i

ζ 1
i ηiσi, (C8)

where as defined before η0 =∑3
k=0 pk = 1 and ηi = p0 +

pi − (pj + pk), with {i,j,k} = {1,2,3} and pi � 0 for any
i. Due to the condition above we have for ζ 1

i �= 0 for all i,
pi = 1/4(1 + ri − rj − rk) for ri = γ 1

i /ζ 1
i , where {i,j,k} =

{1,2,3} and p0 = 1/4(1 + r1 + r2 + r3). Hence the necessary
and sufficient conditions for the existence of a separable
transformation are that all these probabilities are non-negative,
as stated in Lemma 4 [case (iiia)]. Note that any of these
separable transformations can be realized via LOCC as the
POVM {Mi}4

i=1 [9] with Mi = √
pih

1σi(g1)−1 ⊗ (σi)⊗3 can
be implemented locally. Hence, if ζ 1

i �= 0 for all i the necessary
and sufficient conditions for the existence of the LOCC
transformation are 1 + ri − rj − rk � 0 for any choice of i,j,k

such that {i,j,k} = {1,2,3}.
Note that we have different necessary and sufficient

conditions for transformations as in Eq. (C7) if the state
|�(h1,1,1,1)〉 has vanishing ζ 1

i parameters as then ri above is
not defined. For states with one vanishing parameter (Lemma
4 [case (iiib)], i.e., without loss of generality ζ 1

1 = 0, Eq. (C8)
implies that also the corresponding γ 1

i parameter has to
be equal to zero, i.e., γ 1

1 = 0. The other two parameters
have to fulfill η2(3)ζ

1
2(3) = γ 1

2(3) with ηi = p0 + pi − (pj + pk),
{i,j,k} = {1,2,3}. As η2 and η3 are linearly independent and
the two parameters γ 1

2 , γ 1
3 can be chosen non-negative in

the standard form [Eq. (32)], the state |�(h1,1,1,1)〉 can
be reached from all states |�(g1,1,1,1)〉 with γ 1

2 � ζ 1
2 and

γ 1
3 � ζ 1

3 . A similar condition holds for states |�(h1,1,1,1)〉
with two vanishing parameters, i.e., without loss of generality
ζ 1

1 = ζ 1
2 = 0. Then, from Eq. (C8), it follows again that

the corresponding γ 1
i parameters are equal to zero, i.e.,

γ 1
1 = γ 1

2 = 0. Furthermore, the condition η3ζ
1
3 = γ 1

3 has to
be fulfilled, thus, the only necessary and sufficient conditions
for transforming |�(g1

z ,1,1,1)〉 into |�(h1
z,1,1,1)〉 is γ 1

3 � ζ 1
3 .

Note that the necessary conditions for reaching the state
|�(h1

x,h
2
y,z,1,1)〉 via LOCC (Lemma 4 [case (ib)]) can

be obtained by considering the equation E2(H 1
x ⊗ H 2

y,z) =
E1(H 1

x ) ⊗ E1(H 2
y,z) (see Ref. [9]). From there it follows that

η1η2 − η3 = 0 and η1η3 − η2 = 0. Hence, these conditions
are on the one hand fulfilled if (η1)2 = 1, which leads to
the same necessary and sufficient conditions as in Lemma
4 [case (ia)]. The states fulfilling these conditions are of
the form |�(h1

x,g
1
y,z,1,1)〉 and a POVM allowing for this

transformation via LOCC is given in Ref. [9]. On the other
hand the necessary conditions are also fulfilled if η2 = η3 = 0.
By taking into account Eq. (C3) this implies that η1ζ

1
1 = γ 1

1
and γ 2

2 = γ 2
3 = 0. Thus, |�(h1

x,h
2
y,z,1,1)〉 can also be reached

by states of the form |�(g1
x,1,1,1)〉 with γ 1

1 � ζ 1
1 . The POVM

realizing this transformation via LOCC is already given in
Ref. [9] and in the proof of Lemma 4 [case (iii)] above, as
we simply first transform |�(g1

x,1,1,1)〉 into |�(h1
x,1,1,1)〉

and then the latter state is converted into the final state
|�(h1

x,h
2
y,z,1,1)〉.
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